Fifty years devoted to science (on the 70th birthday of Anatolii Mykhailovych Samoilenko)

  • Ya. A. Mitropol’skii
  • Yu. M. Berezans’kyi
  • M. L. Horbachuk
  • V. S. Korolyuk
  • I. O. Lukovs’kyi
  • V. L. Makarov
  • M. O. Perestyuk
  • Yu. S. Samoilenko
  • V. V. Sharko
  • O. M. Sharkovs’kyi
  • A. A. Dorogovtsev
  • Yu. A. Drozd
  • O. L. Rebenko
  • A. M. Ronto
  • M. I. Ronto
Article

References

  1. 1.
    N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).Google Scholar
  2. 2.
    I. Bessmertnyi, “Scientists do not need freedom,” Newspaper “2000,” 11.04.2005, p. 5; http://www.news2000.com.ua/print/aspecty/uchenymsvobodanenuzhna.html.
  3. 3.
    Yu. A. Mitropol’skii, A. M. Samoilenko, and D. I. Martynyuk, Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  4. 4.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).Google Scholar
  5. 5.
    N. N. Bogoljubov, J. A. Mitropolskii, and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics, Hindustan Publishing Corporation, Delhi (1976).Google Scholar
  6. 6.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).MATHGoogle Scholar
  7. 7.
    Yu. A. Mitropolsky, A. M. Samoilenko, and D. I. Martinyuk, Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients, Kluwer, Dordrecht (1992).Google Scholar
  8. 8.
    A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987).Google Scholar
  9. 9.
    A. M. Samoilenko, Elements of the Mathematical Theory of Multi-Frequency Oscillations, Kluwer, Dordrecht (1991).MATHGoogle Scholar
  10. 10.
    Yu. A. Mitropol’skii, A. M. Samoilenko, and V. L. Kulik, Investigation of Dichotomy of Linear Systems of Differential Equations Using Lyapunov Functions [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  11. 11.
    A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods in the Theory of Boundary-Value Problems for Ordinary Differential Equations [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  12. 12.
    A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  13. 13.
    A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of Periodic Solutions [in Russian], Vyshcha Shkola, Kiev (1976).Google Scholar
  14. 14.
    M. Ronto and A. Samoilenko, Numerical-Analytic Methods in the Theory of Boundary-Value Problems, World Scientific, River Edge, NJ (2000).MATHGoogle Scholar
  15. 15.
    A. M. Samoilenko, V. N. Laptinskii, and K. K. Kenzhebaev, Constructive Methods for the Investigation of Solutions of Periodic and Multipoint Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1999).Google Scholar
  16. 16.
    A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, Generalized Inverse Operators and Noetherian Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1995).Google Scholar
  17. 17.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht (2004).MATHGoogle Scholar
  18. 18.
    A. M. Samoilenko and Yu. V. Teplinskii, Countable Systems of Differential Equations, VSP, Utrecht (2003).MATHGoogle Scholar
  19. 19.
    A. M. Samoilenko and R. I. Petryshyn, Multifrequency Oscillations of Nonlinear Systems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (1998).MATHGoogle Scholar
  20. 20.
    A. M. Samoilenko and R. I. Petryshyn, Mathematical Aspects of the Theory of Nonlinear Oscillations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2004).Google Scholar
  21. 21.
    Yu. A. Mitropolsky, A. M. Samoilenko, and V. L. Kulik, Dichotomies and Stability in Nonautonomous Linear Systems, Taylor and Francis, London (2003).MATHGoogle Scholar
  22. 22.
    A. M. Samoilenko and Ya. A. Prykarpats’kyi, Algebraic-Analytic Aspects of the Theory of Completely Integrable Dynamical Systems and Their Perturbations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2002).Google Scholar
  23. 23.
    A. D. Myshkis and A. M. Samoilenko, “Systems with pulses at given times,” Mat. Sb., 74(116), 202–208 (1967).MathSciNetGoogle Scholar
  24. 24.
    A. M. Samoilenko, “Numerical-analytic method for the investigation of systems of ordinary differential equations. I, II,” Ukr. Mat. Zh., 17, No. 4, 82–93 (1966); 18, No. 2, 50–59 (1966).CrossRefGoogle Scholar
  25. 25.
    N. I. Ronto, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new trends of development. I–VII,” Ukr. Mat. Zh., 50, No. 1, 102–117 (1998); 50, No. 2, 225–243 (1998); 50, No. 7, 960–979 (1998); 50, No. 12, 1656–1672 (1998); 51, No. 5, 663–673 (1999); 51, No. 7, 960–971 (1999); 51, No. 9, 1244–1261 (1999).CrossRefMathSciNetGoogle Scholar
  26. 26.
    A. N. Ronto and A. M. Samoilenko, “On the unique solvability of some linear boundary-value problems,” in: Nonlinear Analysis and Applications: To V. Lakshmikantham on His 80 th Birthday, Kluwer, Dordrecht (2003), pp. 861–889.Google Scholar
  27. 27.
    A. N. Ronto, M. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “On periodic solutions of autonomous difference equations,” Georg. Math. J., 8, No. 1, 135–164 (2001).MATHGoogle Scholar
  28. 28.
    M. Farkas, A Huszadik Század, Ahogy Megéltem, Bíbor Kiadó, Miskolc (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • Ya. A. Mitropol’skii
    • 1
  • Yu. M. Berezans’kyi
    • 1
  • M. L. Horbachuk
    • 1
  • V. S. Korolyuk
    • 1
  • I. O. Lukovs’kyi
    • 1
  • V. L. Makarov
    • 1
  • M. O. Perestyuk
    • 1
  • Yu. S. Samoilenko
    • 1
  • V. V. Sharko
    • 1
  • O. M. Sharkovs’kyi
    • 1
  • A. A. Dorogovtsev
    • 1
  • Yu. A. Drozd
    • 1
  • O. L. Rebenko
    • 1
  • A. M. Ronto
    • 1
  • M. I. Ronto
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations