Ukrainian Mathematical Journal

, 59:1737 | Cite as

Investigation of one convective Stefan problem by the Ritz method

  • A. S. Minenko
Article
  • 23 Downloads

Abstract

We study a plane stationary convective Stefan problem in the case where convection is caused by the presence of a given rotation of intensity μ. We propose a method for the investigation of this problem. This method is based on the expansion of a solution in a power series in the small parameter μ. The null term of the expansion is determined by the Ritz method. We obtain a relation that describes the dependence of the equation of free boundary on μ.

References

  1. 1.
    I. V. Danilyuk, “On Stefan problem,” Usp. Mat. Nauk, 40, No. 5, 133–185 (1985).MathSciNetGoogle Scholar
  2. 2.
    A. S. Minenko, Variational Problems with Free Boundary [in Russian], Naukova Dumka, Kiev (2005).Google Scholar
  3. 3.
    B. V. Bazalii and V. Yu. Shelepov, “On one stationary Stefan problem,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 5–8 (1974).Google Scholar
  4. 4.
    B. V. Bazalii and V. Yu. Shelepov, “On one generalization of the stationary Stefan problem,” Mat. Fiz., Issue 27, 65–80 (1975).Google Scholar
  5. 5.
    K. O. Friedrichs, “Uber ein Minimumproblem fur Potentialstromungen mit freiem Rande,” Math. Ann., 109, 60–82 (1933).CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. S. Minenko, “On one optimization problem,” Mat. Fiz., Issue 23, 74–77 (1978).Google Scholar
  7. 7.
    A. S. Minenko, “Axially symmetric flow with free boundary,” Ukr. Mat. Zh., 47, No. 4, 477–488 (1995).MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    I. V. Danilyuk and A. S. Minenko, “On the Ritz method in one nonlinear problem with free boundary,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 4, 291–294 (1978).Google Scholar
  9. 9.
    I. V. Danilyuk and A. S. Minenko, “On one optimization problem with free boundary,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 5, 389–392 (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. S. Minenko
    • 1
  1. 1.Institute of Problems of Artificial IntelligenceUkrainian Academy of SciencesDonetskUkraine

Personalised recommendations