Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On Frobenius groups with noninvariant factor SL 2(3)

  • 18 Accesses

Abstract

We obtain a nonsimplicity criterion of an infinite group containing an infinite class of Frobenius groups L g = 〈a, g −1 ag〉 with complement SL 2(3).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. N. Chernikov, “On locally solvable groups that satisfy the condition of minimality for subgroups,” Mat. Sb., 28, No. 1, 119–129 (1951).

  2. 2.

    S. N. Chernikov, “On the theory of infinite special groups,” Mat. Sb., 7, No. 6, 539–548 (1968).

  3. 3.

    M. I. Kargapolov, “Locally finite groups possessing normal systems with finite factors,” Sib. Mat. Zh., 2, No. 6, 853–873 (1961).

  4. 4.

    M. I. Kargapolov, “On solvable groups of finite rank,” Algebra Logika, 1, No. 5, 37–44 (1962).

  5. 5.

    V. P. Shunkov, “On one generalization of the Frobenius theorem to periodic groups,” Algebra Logika, 6, No. 3, 113–124 (1967).

  6. 6.

    V. P. Shunkov, “On one class of p-groups,” Algebra Logika, 9, No. 4, 484–496 (1970).

  7. 7.

    G. Frobenius, Uber Auflosbare Gruppen. IV, Sitzungsber. Press. Akad. Wiss. Berlin (1901), pp. 1216–1230.

  8. 8.

    V. M. Busarkin and A. I. Starostin, “On locally finite decomposable groups,” Usp. Mat. Nauk, 17, No. 6, 275–294 (1962).

  9. 9.

    V. M. Busarkin and A. I. Starostin, “On decomposable locally finite groups,” Mat. Sb., 62, No. 3, 275–294 (1963).

  10. 10.

    V. P. Shunkov, “On one criterion for the nonsimplicity of groups,” Algebra Logika, 14, No. 5, 576–603 (1975).

  11. 11.

    L. Kh. Zhurtov and V. D. Mazurov, “On Frobenius groups generated by quadratic elements,” in: Abstracts of the International Seminar on Group Theory [in Russian], Ekaterinburg (2001), pp. 77–81.

  12. 12.

    A. I. Starostin, “On Frobenius groups,” Ukr. Mat. Zh., 23, No. 5, 629–639 (1971).

  13. 13.

    V. P. Shunkov, M p -Groups [in Russian], Nauka, Moscow (1990).

  14. 14.

    A. Kh. Zhurtov, Quadratic Elements of Frobenius Groups [in Russian], Doctoral-Degree Thesis (Physics and Mathematics), Nal’chik (2003).

  15. 15.

    A. G. Kurosh, Group Theory [in Russian], Nauka, Moscow (1967).

Download references

Author information

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 6, pp. 765–777, June, 2006.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kozulin, S.N., Senashov, V.I. & Shunkov, V.P. On Frobenius groups with noninvariant factor SL 2(3). Ukr Math J 58, 862–875 (2006). https://doi.org/10.1007/s11253-006-0109-2

Download citation

Keywords

  • Finite Group
  • Arbitrary Element
  • Frobenius Group
  • Finiteness Condition
  • Finite Subgroup