Ukrainian Mathematical Journal

, Volume 56, Issue 8, pp 1362–1370 | Cite as

Generalized golden sections and a new approach to the geometric definition of a number

  • A. P. Stakhov


We consider applications of generalized golden sections to the geometric definition of a number and establish new properties of natural numbers that follow from this approach.


Natural Number Golden Section Geometric Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Stakhov, Introduction to Algorithmic Measurement Theory [in Russian], Sovetskoe Radio, Moscow (1977).Google Scholar
  2. 2.
    A. P. Stakhov, “The golden section in the measurement theory,” Comput. Math. Appl., 17, No.4–6, 613–638 (1989).Google Scholar
  3. 3.
    G. Bergman, “A number system with an irrational base,” Math. Mag., No. 31, 98–119 (1957).Google Scholar
  4. 4.
    A. P. Stakhov, “‘Golden’ section in digital technology,” Avtomat. Vychisl. Tekhn., No. 1, 27–33 (1980).Google Scholar
  5. 5.
    A. P. Stakhov, Codes of Golden Ratio [in Russian], Radio i Svyaz’, Moscow (1984).Google Scholar
  6. 6.
    N. N. Vorob’ev, Fibonacci Numbers [in Russian], Nauka, Moscow (1978).Google Scholar
  7. 7.
    E. V. Hoggat, Fibonacci and Lucas Numbers, Houghton-Mifflin, Palo Alto (1969).Google Scholar
  8. 8.
    A. P. Stakhov, V. Massingua, and A. A. Sluchenkova, Introduction to Fibonacci Coding and Cryptography, Osnova, Kharkov (1999).Google Scholar
  9. 9.
    V. M. Chernov and M. V. Pershina, “Fibonacci-Mersenne and Fibonacci-Fermat discrete transforms,” Bol. Inform. Golden Section: Theory Appl., No. 9–10, 25–31 (1999).Google Scholar
  10. 10.
    A. P. Stakhov and I. S. Tkachenko, “Fibonacci hyperbolic trigonometry,” Dokl. Nats. Akad. Nauk Ukr., Issue 7, 9–14 (1993).Google Scholar
  11. 11.
    A. P. Stakhov, “A generalization of the Fibonacci Q-matrix,” Dopov. Nats. Akad. Nauk Ukr., No. 9, 46–49 (1999).Google Scholar
  12. 12.
    A. P. Stakhov, “Brousentsov’s ternary principle, Bergman’s number system and ternary mirror-symmetrical arithmetic,” Comput. J., 45, No.2, 231–236 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • A. P. Stakhov
    • 1
  1. 1.Vinnitsa Agricultural UniversityVinnitsa

Personalised recommendations