Advertisement

Intraspecific trait variation in grassland plant communities along urban-rural gradients

  • Arnaud Cochard
  • Joséphine Pithon
  • Ferréol Braud
  • Véronique Beaujouan
  • Adeline Bulot
  • Hervé DanielEmail author
Article
  • 84 Downloads

Abstract

Trait-based approaches have been successfully used to demonstrate how the modified ecological conditions within urban areas filter plant species within plant communities. However, there is growing evidence that trait measurement in situ may improve knowledge of the ecological mechanisms underlying such filtering processes. This study aimed to determine the relative contribution of inter- and intraspecific trait variation in explaining the influence of urban-rural gradients on grassland plant communities. Twenty-one stations were sampled along an urban-rural gradient in two French cities. Three functional traits (specific leaf area, maximum height and phenology), chosen to represent general adaptive strategies of plants, were measured on the 26 most abundant grassland plant species. By decomposing the community-level variance of these traits into species turnover, intraspecific trait variability and covariation, we showed how important it may be to take field measurements into account when studying trait distributions in urban ecology. High intraspecific variability may reinforce trait selection effects, for example by favoring both taller species and populations of taller individuals in urban areas in comparison with rural contexts. Advanced phenology at community-level was influenced by early flowering for almost all urban populations of each species while Specific Leaf Area responses were inconsistent. Because trait distributions and ecosystem functions are closely linked, we suggest that it is now important to develop trait-based approaches at community-level, including both intra- and inter-specific trait variability, in order to improve our knowledge of ecological processes operating in urban areas.

Keywords

Environmental filtering Common biodiversity Functional trait variability Urbanization Plant community 

Notes

Acknowledgements

This study was financed by the “Conseil Régional des Pays de la Loire” (URBIO: Biodiversity of Urban Areas). We thank C. Clerbois for her help in collecting field data, M. Jagaille and V. Guichet for producing maps and G. Lajoie for advice on statistical methods.

Supplementary material

11252_2019_827_MOESM1_ESM.docx (162 kb)
ESM 1 (DOCX 162 kb)
11252_2019_827_MOESM2_ESM.docx (22 kb)
ESM 2 (DOCX 22.2 kb)

References

  1. Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits: intra- vs. interspecific variability in plant traits. Funct Ecol 24:1192–1201.  https://doi.org/10.1111/j.1365-2435.2010.01727.x CrossRefGoogle Scholar
  2. Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C (2011) When and how should intraspecific variability be considered in trait-based plant ecology? Perspect Plant Ecol 13:217–222.  https://doi.org/10.1016/j.ppees.2011.04.003 CrossRefGoogle Scholar
  3. Alberti M (2015) Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol Evol 30:114–126.  https://doi.org/10.1016/j.tree.2014.11.007 CrossRefPubMedGoogle Scholar
  4. Albrecht H, Haider S (2013) Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers Conserv 22:2243–2267.  https://doi.org/10.1007/s10531-013-0437-0 CrossRefGoogle Scholar
  5. Ansquer P, Al Haj Khaled R, Cruz P, Theau JP, Therond O, Duru M (2009) Characterizing and predicting plant phenology in species-rich grasslands. Grass Forage Sci 64:57–70.  https://doi.org/10.1111/j.1365-2494.2008.00670.x CrossRefGoogle Scholar
  6. Aronson MF, Nilon CH, Lepczyk CA, Parker TS, Warren PS, Cilliers SS, Goddard MA, Hahs AK, Herzog C, Katti M, La Sorte FA, Williams NSG, Zipperer W (2016) Hierarchical filters determine community assembly of urban species pools. Ecology 97:2952–2963.  https://doi.org/10.1002/ecy.1535 CrossRefPubMedGoogle Scholar
  7. Bardat J, Bioret F, Botineau M, Boullet V et al (2004) Prodrome des végétations de France. Muséum national d’histoire naturelle, Paris, p 171Google Scholar
  8. Bernard J, Musy M, Calmet I, Bocher E, Keravec P (2017) Urban heat island temporal and spatial variations: empirical modeling from geographical and meteorological data. Build Environ 125:423–438.  https://doi.org/10.1016/j.buildenv.2017.08.009 CrossRefGoogle Scholar
  9. Bernard-Verdier M (2012) Structure et assemblage des communautés végétales de parcours des grands causses. Ph-D Thesis. University of Montpellier 2:308Google Scholar
  10. Bernard-Verdier M, Navas M-L, Vellend M, Violle C, Fayolle A, Garnier E (2012) Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J Ecol 100:1422–1433.  https://doi.org/10.1111/1365-2745.12003 CrossRefGoogle Scholar
  11. Bouchet DC, Cheptou P-O, Munoz F (2017) Mowing influences community-level variation in resource-use strategies and flowering phenology along an ecological succession on Mediterranean road slopes. Appl Veg Sci 20:376–387.  https://doi.org/10.1111/avsc.12311 CrossRefGoogle Scholar
  12. Braun-Blanquet J (1965) Plant sociology, the study of plant communities. Hafner Publishing Company, New York. 439 pGoogle Scholar
  13. Buyantuyev A, Xu P, Wu J, Piao S, Wang D (2012) A space-for-time (SFT) substitution approach to studying historical Phenological changes in urban environment. PLoS One 7(12):e51260.  https://doi.org/10.1371/journal.pone.0051260 CrossRefPubMedPubMedCentralGoogle Scholar
  14. CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. Proc Natl Acad Sci U S A 111:4916–4921.  https://doi.org/10.1073/pnas.1323073111 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carreiro MM, Tripler CE (2005) Forest remnants along urban-rural gradients: examining their potential for global change research. Ecosystems 8:568–582.  https://doi.org/10.1007/s10021-003-0172-6 CrossRefGoogle Scholar
  16. Chaudron C, Chauvel B, Isselin-Nondedeu F (2016) Effects of late mowing on plant species richness and seed rain in road verges and adjacent arable fields. Agric Ecosyst Environ 232:218–226.  https://doi.org/10.1016/j.agee.2016.03.047 CrossRefGoogle Scholar
  17. Cheptou P-O, Carrue O, Rouifed S, Cantarel A (2008) Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc Natl Acad Sci U S A 105:3796–3799.  https://doi.org/10.1073/pnas.0708446105 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chuine I (2010) Why does phenology drive species distribution? Philos T Roy Soc B 365:3149–3160.  https://doi.org/10.1098/rstb.2010.0142 CrossRefGoogle Scholar
  19. Cochard A, Pithon J, Jagaille M, Beaujouan V, Pain G, Daniel H (2017) Grassland plant species occurring in extensively managed road verges are filtered by urban environments. Plant Ecol Divers 10:217–229.  https://doi.org/10.1080/17550874.2017.1350764 CrossRefGoogle Scholar
  20. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380.  https://doi.org/10.1071/BT02124 CrossRefGoogle Scholar
  21. Cornwell WK, Ackerly DD (2010) A link between plant traits and abundance: evidence from coastal California woody plants. J Ecol 98:814–821.  https://doi.org/10.1111/j.1365-2745.2010.01662.x CrossRefGoogle Scholar
  22. Craine JM, Wolkovich EM, Gene Towne E, Kembel SW (2012) Flowering phenology as a functional trait in a tallgrass prairie. New Phytol 193:673–682.  https://doi.org/10.1111/j.1469-8137.2011.03953.x CrossRefPubMedGoogle Scholar
  23. Dallimer M, Tang Z, Gaston KJ, Davies ZG (2016) The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol Evol 6:1942–1953.  https://doi.org/10.1002/ece3.1990 CrossRefPubMedPubMedCentralGoogle Scholar
  24. de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, da Silva PM, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893.  https://doi.org/10.1007/s10531-010-9850-9 CrossRefGoogle Scholar
  25. Donihue CM, Lambert MR (2015) Adaptive evolution in urban ecosystems. Ambio 44:194–203.  https://doi.org/10.1007/s13280-014-0547-2 CrossRefPubMedGoogle Scholar
  26. Duncan RP, Clemants SE, Corlett RT, Hahs AK, McCarthy MA, McDonnell MJ, Schwartz MW, Thompson K, Vesk PA, Williams NSG (2011) Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Glob Ecol Biogeogr 20:509–519.  https://doi.org/10.1111/j.1466-8238.2010.00633.x CrossRefGoogle Scholar
  27. Dwyer JM, Hobbs RJ, Mayfield MM (2014) Specific leaf area responses to environmental gradients through space and time. Ecology 95:399–410.  https://doi.org/10.1890/13-0412.1 CrossRefPubMedGoogle Scholar
  28. Elmore AJ, Guinn SM, Minsley BJ, Richardson AD (2012) Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob Change Biol 18:656–674.  https://doi.org/10.1111/j.1365-2486.2011.02521.x CrossRefGoogle Scholar
  29. Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas M-L (2001) Consistency of species ranking based on functional leaf traits. New Phytol 152:69–83.  https://doi.org/10.1046/j.0028-646x.2001.00239.x CrossRefGoogle Scholar
  30. Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Cathy Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637.  https://doi.org/10.1890/03-0799 CrossRefGoogle Scholar
  31. Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quested H, Quétier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau J-P, Thébault A, Vile D, Zarovali MP (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985.  https://doi.org/10.1093/aob/mcl215 CrossRefPubMedGoogle Scholar
  32. Godefroid S, Monbaliu D, Koedam N (2007) The role of soil and microclimatic variables in the distribution patterns of urban wasteland flora in Brussels, Belgium. Landscape Urban Plan 80:45–55.  https://doi.org/10.1016/j.landurbplan.2006.06.001 CrossRefGoogle Scholar
  33. Goodness J, Andersson E, Anderson PML, Elmqvist T (2016) Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol Indic 70:597–605.  https://doi.org/10.1016/j.ecolind.2016.02.031 CrossRefGoogle Scholar
  34. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760.  https://doi.org/10.1126/science.1150195 CrossRefGoogle Scholar
  35. Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39:708–720.  https://doi.org/10.1046/j.1365-2664.2002.00746.x CrossRefGoogle Scholar
  36. Jochner S, Menzel A (2015) Urban phenological studies – past, present, future. Environ Pollut 203:250–261.  https://doi.org/10.1016/j.envpol.2015.01.003 CrossRefPubMedGoogle Scholar
  37. Johnson MTJ, Thompson KA, Saini HS (2015) Plant evolution in the urban jungle. Am J Bot 102:1951–1953.  https://doi.org/10.3732/ajb.1500386 CrossRefPubMedGoogle Scholar
  38. Kalusová V, Čeplová N, Lososová Z (2017) Which traits influence the frequency of plant species occurrence in urban habitat types? Urban Ecosyst 20:65–75.  https://doi.org/10.1007/2Fs11252-016-0588-3 CrossRefGoogle Scholar
  39. Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199.  https://doi.org/10.1016/j.tree.2005.12.006 CrossRefPubMedGoogle Scholar
  40. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164.  https://doi.org/10.2307/3235676 CrossRefGoogle Scholar
  41. Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT (2013) Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol 27:1254–1261.  https://doi.org/10.1111/1365-2435.12116 CrossRefGoogle Scholar
  42. Knapp S, Kühn I, Bakker JP, Kleyer M, Klotz S, Ozinga WA, Poschlod P, Thompson K, Thuiller W, Römermann C (2009) How species traits and affinity to urban land use control large-scale species frequency. Divers Distrib 15:533–546.  https://doi.org/10.1111/j.1472-4642.2009.00561.x CrossRefGoogle Scholar
  43. Kremer P, Hamstead Z, Haase D, McPhearson T, Frantzeskaki N, Andersson E, Kabisch N, Larondelle N, Rall EL, Voigt A, Baró F, Bertram C, Gómez-Baggethun E, Hansen R, Kaczorowska A, Kain J-H, Kronenberg J, Langemeyer J, Pauleit S, Rehdanz K, Schewenius M, van Ham C, Wurster D, Elmqvist T (2016) Key insights for the future of urban ecosystem services research. Ecol Soc 21(2):29.  https://doi.org/10.5751/ES-08445-210229 CrossRefGoogle Scholar
  44. Lajoie G, Vellend M (2015) Understanding context dependence in the contribution of intraspecific variation to community trait–environment matching. Ecology 96:2912–2922.  https://doi.org/10.1890/15-0156.1 CrossRefPubMedGoogle Scholar
  45. Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field – methodology matters. Funct Ecol 22:134–147.  https://doi.org/10.1111/j.1365-2435.2007.01339.x CrossRefGoogle Scholar
  46. Lê S, Josse J, Husson F (2008) FactoMineR: a package for multivariate analysis. J Stat Softw 25:1–18.  https://doi.org/10.18637/jss.v025.i01 CrossRefGoogle Scholar
  47. Lepš J, de Bello F, Šmilauer P, Doležal J (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34:856–863.  https://doi.org/10.1111/j.1600-0587.2010.06904.x CrossRefGoogle Scholar
  48. Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107:433–438.  https://doi.org/10.1111/j.0030-1299.2004.13250.x CrossRefGoogle Scholar
  49. Lovett GM, Weathers KC, Sobczak WV (2000) Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, New York. Ecol Appl 10:73–84. https://doi.org/10.1890/1051-0761(2000)010[0073:NSARIF]2.0.CO;2Google Scholar
  50. McDonnell MJ, Hahs AK (2015) Adaptation and adaptedness of organisms to urban environments. Annu Rev Ecol Evol S 46:261–280.  https://doi.org/10.1146/annurev-ecolsys-112414-054258 CrossRefGoogle Scholar
  51. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185.  https://doi.org/10.1016/j.tree.2006.02.002 CrossRefPubMedGoogle Scholar
  52. Mimet A, Pellissier V, Quénol H, Aguejdad R, Dubreuil V, Rozé F (2009) Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus. Int J Biometeorol 53:287–298.  https://doi.org/10.1007/s00484-009-0214-7 CrossRefPubMedGoogle Scholar
  53. Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height. J Ecol 97:923–932.  https://doi.org/10.1111/j.1365-2745.2009.01526.x CrossRefGoogle Scholar
  54. Neil K, Wu J (2006) Effects of urbanization on plant flowering phenology: a review. Urban Ecosyst 9:243–257.  https://doi.org/10.1007/s11252-006-9354-2 CrossRefGoogle Scholar
  55. Oke TR (1987) Boundary Layer Climates. 2nd. Methuen, 289 pGoogle Scholar
  56. Ordoñez JC, van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149.  https://doi.org/10.1111/j.1466-8238.2008.00441.x CrossRefGoogle Scholar
  57. Pakeman RJ, Quested HM (2007) Sampling plant functional traits: what proportion of the species need to be measured? Appl Veg Sci 10:91–96.  https://doi.org/10.1111/j.1654-109X.2007.tb00507.x CrossRefGoogle Scholar
  58. Palma E, Catford JA, Corlett RT, Duncan RP, Hahs AK, McCarthy MA, McDonnell MJ, Thompson K, Williams NSG, Vesk PA (2017) Functional trait changes in the floras of 11 cities across the globe in response to urbanization. Ecography 40:875–886.  https://doi.org/10.1111/ecog.02516 CrossRefGoogle Scholar
  59. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234.  https://doi.org/10.1071/BT12225 CrossRefGoogle Scholar
  60. Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92:331–362.  https://doi.org/10.1016/j.jenvman.2010.08.022 CrossRefGoogle Scholar
  61. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588.  https://doi.org/10.1111/j.1469-8137.2009.02830.x CrossRefPubMedGoogle Scholar
  62. Pouyat RV, Yesilonis ID, Russell-Anelli J, Neerchal NK (2007) Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Sci Soc Am J 71:1010.  https://doi.org/10.2136/sssaj2006.0164 CrossRefGoogle Scholar
  63. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  64. Roetzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in Central Europe – differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66.  https://doi.org/10.1007/s004840000062 CrossRefPubMedGoogle Scholar
  65. Siefert A, Fridley JD, Ritchie ME (2014) Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter? PLoS One 9:e111189.  https://doi.org/10.1371/journal.pone.0111189 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Thompson K, McCarthy MA (2008) Traits of British alien and native urban plants. J Ecol 96:853–859.  https://doi.org/10.1111/j.1365-2745.2008.01383.x CrossRefGoogle Scholar
  67. Vallet J, Daniel H, Beaujouan V, Rozé F (2008) Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France. Landsc Ecol 23:1205–1217.  https://doi.org/10.1007/s10980-008-9293-9 CrossRefGoogle Scholar
  68. Vallet J, Daniel H, Beaujouan V, Rozé F, Pavoine S (2010) Using biological traits to assess how urbanization filters plant species of small woodlands. Appl Veg Sci 13:412–424.  https://doi.org/10.1111/j.1654-109X.2010.01087.x CrossRefGoogle Scholar
  69. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Evol S 33:125–159.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150452 CrossRefGoogle Scholar
  70. Williams NSG, Schwartz MW, Vesk PA, McCarthy MA, Hahs AK, Clemants SE, Corlett RT, Duncan RP, Norton BA, Thompson K, McDonnell MJ (2009) A conceptual framework for predicting the effects of urban environments on floras. J Ecol 97:4–9.  https://doi.org/10.1111/j.1365-2745.2008.01460.x CrossRefGoogle Scholar
  71. Williams NSG, Hahs AK, Vesk PA (2015) Urbanisation, plant traits and the composition of urban floras. Perspect Plant Ecol 17:78–86.  https://doi.org/10.1016/j.ppees.2014.10.002 CrossRefGoogle Scholar
  72. Yakub M, Tiffin P (2017) Living in the city: urban environments shape the evolution of a native annual plant. Glob Change Biol 23:2082–2089.  https://doi.org/10.1111/gcb.13528 CrossRefGoogle Scholar
  73. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Schneider A (2004) The footprint of urban climates on vegetation phenology. Geophys Res Lett 31:L12209.  https://doi.org/10.1029/2004GL020137 CrossRefGoogle Scholar
  74. Ziska LH, Bunce JA, Goins EW (2004) Characterization of an urban-rural CO2 /temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia 139:454–458.  https://doi.org/10.1007/s00442-004-1526-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BAGAPINRA, AGROCAMPUS OUEST, ESA AngersFrance

Personalised recommendations