Urban Ecosystems

, Volume 22, Issue 4, pp 699–708 | Cite as

Window strikes: bird collisions in a Neotropical green city

  • Miguel A. Gómez-Martínez
  • Daniel KlemJr
  • Octavio Rojas-Soto
  • Fernando González-García
  • Ian MacGregor-ForsEmail author


Window strikes are among the most worrisome causes of bird mortality. Being responsible for billions of avian deaths, bird-window collisions have been widely studied in the US and Canada, with few studies from Europe, Asia, and Latin America. Thus, there is still a dearth of knowledge regarding this alarming phenomenon in regions where biodiversity and urbanization peek, such as Latin America. In this study, we assessed bird-window collisions in Xalapa, a small-to-medium-sized Neotropical city located in Southeast Mexico. We gathered data under two schemes: (1) a standardized survey procedure and (2) non-systematic records. Regarding the former, we evaluated the role of building and surrounding vegetation traits, as well as the location of focal buildings in driving bird-window collisions. Considering both schemes, we recorded bird-window collisions for 43 species. The most frequent striking groups were hummingbirds and thrushes, which had already been identified as vulnerable given some of their natural and life history traits. Regarding the standardized survey, we found no statistical differences in the number of collisions among seasons; yet, we did record a predominance of strikes from resident bird species over migrants among all studied seasons. Our results show a significant positive relationship between the amount of surrounding vegetation area of the studied buildings and bird-window collision frequency, while building non-glass material area showed a significant negative relationship. Based on our findings and the limitations of our study, we encourage future research to combine systematic and standard surveys throughout the year with citizen science, together with carcass removal assessments and bird density surveys in the immediate vicinity of focal buildings.


Avian ecology Avian mortality Bird-window collisions Urban ecology Urbanization 



We are deeply thankful with Alberto González Romero, Fabio Germán Cupul Magaña, Augusto João Piratelli, and Rafael Rueda Hernández for their comments and suggestions that enhanced the clarity and quality of the paper; Michelle García Arroyo for her assistance in the field and for her comments on the manuscript; Julian Avila Campos, Oscar Humberto Marín Gómez, and Juan Fernando Escobar Ibáñez for their help with the identification of birds; Carlos Mauricio Trujillo for his help in the fieldwork; Ina Falfán for drawing Figs. 1 and 2; Pablo Cobos Mejía and Francisco Arredondo Álvarez for their support and permission to carry out the surveys inside the Campus for the Culture, Arts and Sports (Campus CAD) of the Universidad Veracruzana (UV); and Claudio Mota Vargas, Martín de los Santos Bailón, Saturnino García Reyes, Diego Santiago Alarcón, Roger Guevara Hernández, Omar García Yova, Alix Adriana Bejarano Bolívar, Moisés Alejandro Ruíz Martínez, Arturo Hernández Huerta, Avril Manrique Ascensio, Diana Abilene Ahuatzin Flores, Erik Joaquín Corro Méndez, Nora Lara Lagunes, Santiago Jaume Schinkel, and Mildred Morales Díaz for additional data for the species list. M.A.G.-M. acknowledges the scholarship and financial support provided by the National Council of Science and Technology (CONACYT 416889), and the Master’s Program of the Instituto de Ecología, A.C. (INECOL).


  1. Agudelo-Álvarez L, Moreno-Velasquez J, Ocampo-Peñuela N (2010) Colisiones de aves contra ventanales en un campus universitario de Bogotá, Colombia. Ornitol Colomb 10:3–10Google Scholar
  2. Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams SNG, Cilliers S, Clarkson B, Dobbs C et al (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc Lond B 281:20133330CrossRefGoogle Scholar
  3. Bartels M (2017) Nearly 400 migratory birds were killed by one Texas building in a single night. Audubon. [Online.] Available at Accessed 15 April 2019
  4. BirdLife International (2017) Pitta nympha. The IUCN red list of threatened species 2017: e. T22698684A116880779Google Scholar
  5. Borden WC, Lockhart OM, Jones AW, Lyons MS (2010) Seasonal, taxonomic, and local habitat components of bird-window collisions on an urban university campus in Cleveland, OH. Ohio J Sci 110:44–52Google Scholar
  6. Brisque T, Campos-Silva LA, Piratelli AJ (2017) Relationship between bird-of-prey decals and bird-window collisions on a Brazilian university campus. Zoologia 34:1–8CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  8. Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urban Plan 74:46–69CrossRefGoogle Scholar
  9. Crawley MJ (2013) The R book. Wiley, ChichesterGoogle Scholar
  10. Croci S, Butet A, Clergeau P (2008) Does urbanization filter birds on the basis of their biological traits? Condor 110:223–240CrossRefGoogle Scholar
  11. Cupul-Magaña FG (2003) Nota sobre colisiones de aves en las ventanas de edificios universitarios en Puerto Vallarta, México. Huitzil 4:17–21Google Scholar
  12. Cusa M, Jackson DA, Mesure M (2015) Window collisions by migratory bird species: urban geographical patterns and habitat associations. Urban Ecosyst 18:1427–1446CrossRefGoogle Scholar
  13. Dunn EH (1993) Bird mortality from striking residential windows in winter. J Field Ornith 64:302–309Google Scholar
  14. Dunn JL, Alderfer JK (2011) National Geographic field guide to the birds of North America. National Geographic, Washington, D.C.Google Scholar
  15. Eldredge N, Horenstein S (2014) Concrete jungle: new York City and our last best hope for a sustainable future. U. of California Press, OaklandGoogle Scholar
  16. Emlen JT (1974) An urban bird community in Tucson, Arizona: derivation, structure, regulation. Condor 76:184–197CrossRefGoogle Scholar
  17. Escobar-Ibáñez JF, MacGregor-Fors I (2015) On a tightrope: use of open sky urban telephone wires by azure-crowned hummingbirds (Amazilia cyanocephala) for nesting. Wilson J Ornithol 127:297–302CrossRefGoogle Scholar
  18. Escobar-Ibáñez JF, MacGregor-Fors I (2016) Peeking into the past to plan the future: assessing bird species richness in a neotropical city. Urban Ecosyst 19:657–667CrossRefGoogle Scholar
  19. Evans KL, Newson SE, Gaston KJ (2009) Habitat influences on urban avian assemblages. Ibis 151:19–39CrossRefGoogle Scholar
  20. Falfán I, Muñoz-Robles CA, Bonilla-Moheno M, MacGregor-Fors I (2018) Can you really see ‘green’? Assessing physical and self-reported measurements of urban greenery. Urb For Urb Gree 36:13–21Google Scholar
  21. Gelb Y, Delacretaz N (2009) Windows and vegetation: primary factors in Manhattan bird collisions. Northeast Nat 16:455–470CrossRefGoogle Scholar
  22. Gómez-Moreno VDC, Herrera-Herrera JR, Niño-Maldonado S (2018) Colisión de aves en ventanas del Centro Universitario Victoria, Tamaulipas, México. Huitzil 19:227–236Google Scholar
  23. González-García F, Straub R, Lobato-García JA, MacGregor-Fors I (2014) Birds of a Neotropical green city: an up-to-date review of the avifauna of the city of Xalapa with additional unpublished records. Urban Ecosyst 17:991–1012CrossRefGoogle Scholar
  24. González-García F, Straub R, Lobato-García JA, MacGregor-Fors I, Santiago-Alarcón D (2016) Nuevos registros y notas adicionales comentadas sobre la avifauna de la ciudad de Xalapa, Veracruz, México. Acta Zool Mex 32:253–269Google Scholar
  25. Graham DL (1997) Spider webs and windows as potentially important sources of hummingbird mortality. J Field Ornithol 68:98–101Google Scholar
  26. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760CrossRefGoogle Scholar
  27. Hager SB, Cosentino BJ (2014) Surveying for bird carcasses resulting from window collisions: a standardized protocol. PeerJ 2:e406v1CrossRefGoogle Scholar
  28. Hager SB, Craig ME (2014) Bird-window collisions in the summer breeding season. PeerJ 2:e460CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hager SB, Trudell H, McKay KJ, Crandall SM, Mayer L (2008) Bird density and mortality at windows. Wilson J Ornithol 120:550–564CrossRefGoogle Scholar
  30. Hager SB, Cosentino BJ, McKay KJ (2012) Scavenging affects persistence of avian carcasses resulting from window collisions in an urban landscape. J Field Ornithol 83:203–211CrossRefGoogle Scholar
  31. Hager SB, Trudell H, McKay KJ, Monson C, Zuurdeeg W, Blevins B (2013) Window area and development drive spatial variation in bird-window collisions in an urban landscape. PLoS One 8:e53371CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hager SB, Cosentino BJ, Aguilar-Gómez MA, Anderson ML, Bakermans M, Boves TJ, Brandes D, Butler MW, Butler EM, Cagle NL, Calderón-Parra R et al (2017) Continent-wide analysis of how urbanization affects bird-window collision mortality in North America. Biol Conserv 212:209–215CrossRefGoogle Scholar
  33. Haupt H (2011) Auf dem Weg zu einem neuen Mythos? Warum UV-Glas zur Vermeidung von Vogelschlag noch nicht empfohlen werden kann. Berichte zum Vogel 47:143–160Google Scholar
  34. Howell SNG, Webb S (1995) A guide to the birds of Mexico and Northern Central America. Oxford University Press, OxfordGoogle Scholar
  35. INEGI (2010) Compendio de información geográfica municipal 2010. Xalapa. Veracruz de Ignacio de la Llave. Instituto Nacional de Estadística y Geografía. [Online.] Available at Accessed 15 April 2019
  36. Kahle LQ, Flannery ME, Dumbacher JP (2016) Bird-window collisions at a west-coast urban park museum: analyses of bird biology and window attributes from Golden Gate Park, San Francisco. PLoS One 11:e0144600CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim EM, Choi CY, Kang CW (2013) Causes of injury and mortality of fairy Pitta Pitta nympha on Jeju Island, Republic of Korea. Forktail 29:145–148Google Scholar
  38. Klem D (1989) Bird–window collisions. Wilson Bull 101:606–620Google Scholar
  39. Klem D (1990) Collisions between birds and windows: mortality and prevention. J Field Ornithol 6:120–128Google Scholar
  40. Klem D (2014) Landscape, legal, and biodiversity threats that windows pose to birds: a review of an important conservation issue. Land 3:351–361CrossRefGoogle Scholar
  41. Klem D (2015) Bird-window collisions: a critical animal welfare and conservation issue. J Appl Anim Welf Sci 18:S11–S17CrossRefPubMedGoogle Scholar
  42. Klem D (2018) Erratum for Klem 2015. J Appl Anim Welf Sci 21:101CrossRefGoogle Scholar
  43. Klem D, Keck DC, Marty KL, AJ M–B, Niciu EE, Platt CT (2004) Effects of window angling, feeder placement, and scavengers on avian mortality at plate glass. Wilson Bull 116:69–73CrossRefGoogle Scholar
  44. Klem D, Farmer CJ, Delacretaz N, Gelb Y, Saenger PG (2009) Architectural and landscape risk factors associated with bird-glass collisions in an urban environment. Wilson J Ornithol 121:126–134CrossRefGoogle Scholar
  45. Kummer JA, Bayne EM (2015) Bird feeders and their effects on bird-window collisions at residential houses. Avian Conserv Ecol 10:6CrossRefGoogle Scholar
  46. Kummer JA, Nordell CJ, Berry TM, Collins CV, Tse CRL, Bayne EM (2016) Use of bird carcass removals by urban scavengers to adjust bird-window collision estimates. Avian Conserv Ecol 11:12CrossRefGoogle Scholar
  47. Lemoine Rodríguez R (2012) Cambios en la cobertura vegetal de la ciudad de Xalapa-Enríquez, Veracruz y zonas circundantes entre 1950 y 2010. Facultad de Biología, Universidad Veracruzana, Xalapa. Bsc ThesisGoogle Scholar
  48. Liu J, Daily GC, Ehrlich P, Luck GW (2003) Effects of household dynamics on resource consumption and biodiversity. Nature 421:530–533CrossRefPubMedGoogle Scholar
  49. Loss SR, Will T, Loss SS, Marra PP (2014) Bird–building collisions in the United States: estimates of annual mortality and species vulnerability. Condor 116:8–23CrossRefGoogle Scholar
  50. Loss SR, Will T, Marra PP (2015) Direct mortality of birds from anthropogenic causes. Annu Rev Ecol Evol Syst 46:99–120CrossRefGoogle Scholar
  51. MacGregor-Fors I (2010) How to measure the urban-wildland ecotone: redefining “peri-urban” areas. Ecol Res 25:883–887CrossRefGoogle Scholar
  52. MacGregor-Fors I, Escobar-Ibáñez JF (2017) Birds from urban Latin America, where economic inequality and urbanization meet biodiversity. In: MacGregor-Fors I, Escobar-Ibáñez JF (eds) Avian ecology in Latin American cityscapes. Springer, Cham, pp 1–10CrossRefGoogle Scholar
  53. Machtans CS, Wedeles CHR, Bayne EM (2013) A first estimate for Canada of the number of birds killed by colliding with building windows. Avian Conserv Ecol 8:6Google Scholar
  54. Marzluff JM (2017) A decadal review of urban ornithology and a prospectus for the future. Ibis 159:1–13CrossRefGoogle Scholar
  55. Marzluff JM, Bowman R, Donnelly R (2001) Avian ecology and conservation in an urbanizing world. Springer, BostonCrossRefGoogle Scholar
  56. Maxwell SL, Fuller RA, Brooks TM, Watson JE (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143–145CrossRefPubMedGoogle Scholar
  57. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260CrossRefGoogle Scholar
  58. Menacho-Odio RM (2015) Colisión de aves contra ventanas en Costa Rica: conociendo el problema a partir de datos de museos, ciencia ciudadana y el aporte de biólogos. Zeledonia 19:10–21Google Scholar
  59. Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1–110CrossRefPubMedGoogle Scholar
  60. O’Connell TJ (2001) Avian window strike mortality at a suburban office park. Raven 72:141–149Google Scholar
  61. Ocampo-Peñuela N, Peñuela-Recio L, Ocampo-Durán Á (2016) Decals prevent bird-window collisions at residences: a successful case study from Colombia. Ornitol Colomb 15:94–101Google Scholar
  62. Oviedo S (2015) Actitud en la preferencia de métodos para evitar el choque de aves contra puertas y ventanas de vidrio en Costa Rica. Zeledonia 19:22–31Google Scholar
  63. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
  64. Riding CS, Loss SR (2019) Factors influencing experimental estimation of scavenger removal and observer detection in bird-window collision surveys. Ecol Appl
  65. Rössler M, Nemeth E, Bruckner A (2015) Glass pane markings to prevent bird-window collisions: less can be more. Biologia 70:4CrossRefGoogle Scholar
  66. Ruelas-Inzunza E, Aguilar Rodríguez SH (2010) La avifauna urbana del Parque Ecológico Macuiltépetl en Xalapa, Veracruz, México. Ornitol Neotrop 21:87–103Google Scholar
  67. Santiago-Alarcon D, Delgado-V CA (2017) Warning! Urban threats for birds in Latin America. In: MacGregor-Fors I, Escobar-Ibáñez JF (eds) Avian ecology in Latin American cityscapes. Springer, Cham, pp 125–142CrossRefGoogle Scholar
  68. Santos LPS, de Abreu VF, de Vasconcelos MF (2017) Bird mortality due to collisions in glass panes on an important bird area of southeastern Brazil. Rev Bras Ornitol 25:90–101Google Scholar
  69. Schmid H, Sierro A (2000) Untersuchungen zur Verhütung von Vogelkollisionen an transparenten Lärmschutzwänden. Natur Landschaft 11:426–430Google Scholar
  70. Scott SD, McFarland C (2010) Bird feathers: a guide to north American species. Stackpole, MechanicsburgGoogle Scholar
  71. Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6:e23777CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sol D, González-Lagos C, Moreira D, Maspons J, Lapiedra O (2014) Urbanisation tolerance and the loss of avian diversity. Ecol Lett 17:942–950CrossRefPubMedGoogle Scholar
  73. United Nations (2015) World urbanization prospects: the 2014 revision. United Nations, New YorkGoogle Scholar
  74. Williams-Linera G, Manson RH, Isunza-Vera E (2002) La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera Bosques 8:73–89CrossRefGoogle Scholar
  75. Wittig TW, Cagle NL, Ocampo-Peñuela N, Winton RS, Zambello E, Lichtneger Z (2017) Species traits and local abundance affect bird-window collision frequency. Avian Conserv Ecol 12:17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Red de Ambiente y SustentabilidadInstituto de Ecología, A.C. (INECOL)XalapaMexico
  2. 2.Acopian Center for Ornithology, Department of BiologyMuhlenberg CollegeAllentownUSA
  3. 3.Red de Biología EvolutivaInstituto de Ecología, A.C. (INECOL)XalapaMexico
  4. 4.Red Biología y Conservación de VertebradosInstituto de Ecología, A.C. (INECOL)VeracruzMexico

Personalised recommendations