Urban Ecosystems

, Volume 21, Issue 6, pp 1139–1149 | Cite as

Reducing management intensity and isolation as promising tools to enhance ground-dwelling arthropod diversity in urban grasslands

  • Sascha BuchholzEmail author
  • Karsten Hannig
  • Maria Möller
  • Jens Schirmel


Urbanisation is a growing global phenomenon having multiple ecological consequences. However, the effects of urbanisation on biodiversity remain ambiguous, and some evidence exists that cities provide valuable secondary habitats for many species, possibly mitigating regional biodiversity loss. Therefore, the value of urban sites for biodiversity depends on local habitat conditions and the configuration of the surrounding landscape. We aimed to disentangle the effects of local habitat parameters (management, plant diversity) and urban matrix variables (urbanisation, isolation) on carabid beetle and spider diversity and traits in informal urban green spaces in Berlin, Germany. Habitat management and isolation were the most important influences on carabid beetle and spider species and trait compositions. Spider communities of irregular managed sites contained 2.5 times more species of conservation concern than extensive (regular) managed sites. Moreover, irregular managed sites contained larger species (both for carabid beetles and spiders) and affected the hunting mode of spiders. Isolated sites tended to have lower spider species richness and number of spider species of conservation concern. Moreover, isolated sites were characterised by small, mobile and herbivorous carabid beetles. In contrast, urbanisation and local plant diversity had no effect on carabid beetles and spiders. We conclude that urban grasslands within residential areas – even if not targeted for conservation plans – can provide important habitats for conserving biodiversity, including species of conservation concern. Reducing the intensity of habitat management and increasing the connectivity of urban grassland sites can promote diverse arthropod communities and should therefore be considered in urban planning.


Biological traits Carabid beetles Functional ecology Habitat filter Spiders Urbanisation 



We thank the Senatsverwaltung für Stadtentwicklung und Umwelt for permission to collect carabids and spiders and the Bezirksamt Marzahn-Hellersdorf, Abteilung für Ökologische Stadtentwicklung and Stadt und Land Wohnbauten for providing study sites. We also thank Stefan Siegl for conducting field work. Finally, we give thanks to Julia Eichfeld, Leonie Fischer and Moritz von der Lippe for sharing site data and providing valuable information on study sites. Finally, we appreciate the effort of two anonymous reviewers whose recommendations significantly improved this text. SB was funded by the German Federal Ministry of Education and Research BMBF within the Collaborative Project “Bridging in Biodiversity Science-BIBS” (funding number 01LC1501A-H).

Supplementary material

11252_2018_786_MOESM1_ESM.docx (287 kb)
ESM 1 (DOCX 286 kb)


  1. Alaruikka D, Kotze DJ, Matveinen K, Niemelä J (2002) Carabid beetle and spider assemblages along a forested urban-rural gradient in southern Finland. J Insect Conserv 6:195–206CrossRefGoogle Scholar
  2. Aronson MFJ, Lepczyk CA, Evans KL, Goddard MA, Lerman SB, Macivor JS, Nilon CH, Vargo T (2017) Biodiversity in the city: key challenges for urban green space management. Front Ecol Environ 15:189–196CrossRefGoogle Scholar
  3. Bang C, Faeth SH (2011) Variation in arthropod communities in response to urbanization: seven years of arthropod monitoring in a desert city. Landsc Urban Plan 103:383–399CrossRefGoogle Scholar
  4. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Ent Res 95:69–114Google Scholar
  5. Beninde J, Veith M, Hochkirch A (2015) Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett 18:581–592CrossRefGoogle Scholar
  6. Buchholz S (2010) Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodivers Conserv 19:2565–2595CrossRefGoogle Scholar
  7. Buchholz S, Hannig K, Schirmel J (2013) Losing uniqueness – shifts in carabid species composition during dry grassland and heathland succession. Anim Conserv 16:661–670CrossRefGoogle Scholar
  8. Burkman CE, Gardiner MM (2015) Spider assemblages within greenspaces of a deindustrialized urban landscape. Urban Ecosyst 18:793–818CrossRefGoogle Scholar
  9. Cardoso P, Pekár S, Jocque R, Coddington JA (2011) Global patterns of guild com-position and functional diversity of spiders. PLoS ONE 6:e21710CrossRefGoogle Scholar
  10. Croci S, Butet A, Georges A, Aguejdad R, Clergeau P (2008) Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc Ecol 23:1171–1186CrossRefGoogle Scholar
  11. Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412CrossRefGoogle Scholar
  12. Dray S, Dufour AB, Chessel D (2007) The ade4 package-II: two-table and K-table methods. R News 7:47–52Google Scholar
  13. Eckert S, Möller M, Buchholz S (2017) Grasshopper diversity of urban wastelands is primarily boosted by habitat factors. Insect Conserv Diver 10:248–257CrossRefGoogle Scholar
  14. Egerer MH, Arel C, Otoshi MD, Quistberg RD, Bichier P, Philpott SM (2017) Urban arthropods respond variably to changes in landscape context and spatial scale. J Urban Ecology 2017:1–10Google Scholar
  15. Elek Z, Lövei GL (2007) Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark. Acta Oecol 32:104–111CrossRefGoogle Scholar
  16. Fischer LK, von der Lippe M, Kowarik I (2013a) Urban land use types contribute to grassland conservation: the example of berlin. Urban For Urban Green 12:263–272CrossRefGoogle Scholar
  17. Fischer LK, von der Lippe M, Rillig MC, Kowarik I (2013b) Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol Conserv 159:119–126CrossRefGoogle Scholar
  18. Fischer LK, von der Lippe M, Kowarik I (2013c) Urban grassland restoration: which plant traits make desired species successful colonizers? Appl Veg Sci 16:272–285CrossRefGoogle Scholar
  19. Fischer LK, Eichfeld J, Kowarik I, Buchholz S (2016) Disentangling urban habitat and matrix effects on wild bee species. PeerJ 4:e2729. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Foelix R (2010) Biology of spiders. Oxford University PressGoogle Scholar
  21. Fox J, Weisberg S (2011) An {R} companion to applied regression, Second Edition. Thousand Oaks: SageGoogle Scholar
  22. Gerisch M, Agostinelli V, Henle K, Dziock F (2012) More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121:508–515CrossRefGoogle Scholar
  23. Gunnarsson B, Federsel LM (2014) Bumblebees in the city: abundance, species richness and diversity in two urban habitats. J Insect Conserv 18:1185–1191CrossRefGoogle Scholar
  24. Hajek AE (2004) Natural enemies: an introduction to biological control. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Hartley DJ, Koivula MJ, Spence JR, Pelletier R, Ball GE (2007) Effects of urbanization on ground beetle assemblages (Coleoptera, Carabidae) of grassland habitats in western Canada. Ecography 30:673–684CrossRefGoogle Scholar
  26. Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605CrossRefGoogle Scholar
  27. Homburg K, Homburg N, Schäfer F, Schuldt A, Assmann T (2014) – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv Diver 7:195–205CrossRefGoogle Scholar
  28. Ives CD, Lentini PE, Threlfall CG, Ikin K, Shanahan DF, Garrard GE, Bekessy SA, Fuller RA, Mumaw L, Rayner L, Rowe R, Valentine LE, Kendal D (2016) Cities are hotspots for threatened species. Glob Ecol Biogeogr 25:117–126CrossRefGoogle Scholar
  29. Jones EL, Leather SR (2012) Invertebrates in urban areas: a review. Eur J Entomol 109:463–478CrossRefGoogle Scholar
  30. Kielhorn K-H (2005) Rote Liste und Gesamtartenliste der Laufkäfer (Coleoptera: Carabidae) von Berlin. In: Der Landesbeauftragte für Naturschutz und Landschaftspflege / Senatsverwaltung für Stadtentwicklung (Ed.): Rote Listen der gefährdeten Pflanzen und Tiere von Berlin. CD-ROMGoogle Scholar
  31. Knop E (2016) Biotic homogenization of three insect groups due to urbanization. Glob Chang Biol 22:228–236CrossRefGoogle Scholar
  32. Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983CrossRefGoogle Scholar
  33. Legendre P, Galzin R, Harmelin-Vivien ML (1997) Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:547–562Google Scholar
  34. Leibold MA, Holoyak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  35. Lowe EC, Threlfall CG, Wilder SM, Hochuli DF (2018) Environmental drivers of spider community composition at multiple scales along an urban gradient. Biodivers Conserv 27:829–852CrossRefGoogle Scholar
  36. MacIvor JS, Lundholm J (2011) Insect species composition and diversity on intensive green roofs and adjacent level-ground habitats. Urban Ecosyst 14:225–241CrossRefGoogle Scholar
  37. Magura T, Horváth R, Tóthmérész B (2010a) Effects of urbanization on ground-dwelling spiders in forest patches in Hungary. Landsc Ecol 25:621–629CrossRefGoogle Scholar
  38. Magura T, Lövei GL, Tóthmérész B (2010b) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob Ecol Biogeogr 19:16–26CrossRefGoogle Scholar
  39. Magurran AE, McGill BJ (Eds.) (2011) Biological diversity: Frontiers in measurement and assessment. Oxford University PressGoogle Scholar
  40. Melliger RL, Rusterholz H-P, Baur B (2017) Habitat- and matrix-related differences in species diversity and trait richness of vascular plants, Orthoptera and Lepidoptera in an urban landscape. Urban Ecosyst 20:1095–1107CrossRefGoogle Scholar
  41. Merckx T, Souffreau C, Kaiser A, Baardsen LF, Backeljau T, Bonte D, Brans KI, Cours M, Dahirel M, Debortoli N, De Wolf K, Engelen JMT, Fontaneto D, Gianuca AT, Govaert L, Hendrickx F, Higuti J, Lens L, Martens K, Matheve H, Matthysen E, Piano E, Sablon R, Schön I, Van Doninck K, De Meester L, Van Dyck H (2018) Body-size shifts in aquatic and terrestrial urban communities. Nature 558:113–116CrossRefGoogle Scholar
  42. Miranda AC, Schielzeth H, Sonntag T, Partecke J (2013) Urbanization and its effects on personality traits: a result of microevolution or phenotypic plasticity? Glob Chang Biol 19:2634–2644CrossRefGoogle Scholar
  43. Møller AP (2009) Successful city dwellers: a comparative study of the ecological characteristics of urban birds in the western Palearctic. Oecologia 159:849–858CrossRefGoogle Scholar
  44. Moorman CE, Bowen LT, Kilgo JC, Sorenson CE, Hanula JL, Horn S, Ulyshen MD (2007) Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest. J Field Ornithol 78:11–20CrossRefGoogle Scholar
  45. Moretti M, Dias ATC, De Bello F, Altermatt F, Chown SL, Azcárate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibanez S, Öckinger E, Sousa JP, Ellers J, Berg MP (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567CrossRefGoogle Scholar
  46. Müller-Motzfeld G (2006) Band 2, Adephaga 1: Carabidae (Laufkäfer). In: Freude H, Harde KW, Lohse GA, Klausnitzer B (Eds.) Die Käfer Mitteleuropas. Spektrum-Verlag, Heidelberg/BerlinGoogle Scholar
  47. Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2016) Spiders of Europe. Online at: Accessed 30 Nov 2016
  48. Nielsen AB, van den Bosch M, Maruthaveeran S, Konijnendijk van den Bosch C (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327CrossRefGoogle Scholar
  49. Niemelä J, Kotze J (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landsc Urban Plan 92:65–71CrossRefGoogle Scholar
  50. Noreika N, Pajunen T, Kotze DJ (2015) Urban mires as hotspots of epigaeic arthropod diversity. Biodivers Conserv 24:2991–3007CrossRefGoogle Scholar
  51. Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017). vegan: Community Ecology Package. R package version 2.4–3.
  52. O'Sullivan OS, Holt AR, Warren PH, Evan KL (2017) Optimising UK urban road verge contributions to biodiversity and ecosystem services with cost-effective management. J Environ Manag 191:162–171CrossRefGoogle Scholar
  53. Philpott SM, Cotton J, Bichier P, Friedrich RL, Moorhead LC, Uno S, Valdez M (2014) Local and landscape drivers of arthropod abundance, richness, and trophic composition in urban habitats. Urban Ecosyst 17:513–532CrossRefGoogle Scholar
  54. Piano E, de Wolf K, Bona F, Bonte D, Bowler DE, Isaia M, Lens L, Merckx T, Mertens D, van Kerckvoorde M, de Meester L, Hendrickx F (2017) Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Glob Chang Biol 23:2554–2564CrossRefGoogle Scholar
  55. Platen R, von Broen B (2005) Gesamtartenliste und Rote Liste der Webspinnen und Weberknechte (Arachnida: Araneae, Opiliones) des Landes Berlin. In: Der Landesbeauftragte für Naturschutz und Landschaftspflege / Senatsverwaltung für Stadtentwicklung (Ed.) Rote Listen der gefährdeten Pflanzen und Tiere von Berlin. CD-ROMGoogle Scholar
  56. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci U S A 105:20770–20775CrossRefGoogle Scholar
  57. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:
  58. Riechert SE, Lockley T (2003) Spiders as biological control agents. Annu Rev Entomol 29:299–320CrossRefGoogle Scholar
  59. Saari S, Richter S, Higgins M, Oberhofer M, Jennings A, Faeth SH (2016) Urbanization is not associated with increased abundance or decreased richness of terrestrial animals - dissecting the literature through meta-analysis. Urban Ecosyst 19:1251–1264CrossRefGoogle Scholar
  60. Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc Ecol 25:941–954CrossRefGoogle Scholar
  61. Sattler T, Obrist MK, Duelli P, Moretti M (2011) Urban arthropod communities: added value or just a blend of surrounding biodiversity? Landsc Urban Plan 103:347–361CrossRefGoogle Scholar
  62. Schirmel J, Thiele J, Entling MH, Buchholz S (2016) Trait composition and functional diversity of spiders and carabids in linear landscape elements. Agric Ecosyst Environ 235:318–328CrossRefGoogle Scholar
  63. Seress G, Lipovits A, Bókony V, Czúni L (2014) Quantifying the urban gradient: a practical method for broad measurements. Landsc Urban Plan 131:42–50CrossRefGoogle Scholar
  64. Soga M, Kanno N, Yamaura Y, Koike S (2013) Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. J Insect Conserv 17:421–428CrossRefGoogle Scholar
  65. Tamburini G, Pevere I, Fornasini N, De Simone S, Sigura M, Boscutti ML (2016) Conservation tillage reduces the negative impact of urbanisation on carabid communities. Insect Conserv Diver 9:438–445CrossRefGoogle Scholar
  66. Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci U S A 99:12923–12926CrossRefGoogle Scholar
  67. Turrini A, Knop E (2015) A landscape ecology approach identifies important drivers of urban biodiversity. Glob Chang Biol 21:1652–1667CrossRefGoogle Scholar
  68. Senatsverwaltung für Umwelt, Verkehr und Klimaschutz (2016a) Berlin Environmental Atlas - 05.08 Biotopes. Online at:
  69. Senatsverwaltung für Umwelt, Verkehr und Klimaschutz (2016b) Berlin Environmental Atlas - 04.05 Urban Climate Zones. Online at:
  70. Varet M, Burel F, Pétillon J (2014) Can urban consilidation limit local biodiversity erosion? Responses from carabid beetle and spider assemblages in western France. Urban Ecosyst 17:123–137CrossRefGoogle Scholar
  71. Venn S, Kotze DJ (2014) Benign neglect enhances urban habitat heterogeneity: responses of vegetation and carabid beetles (Coleoptera: Carabidae) to the cessation of mowing of park lawns. Eur J Entomol 111:703–714Google Scholar
  72. Venn S, Rokala K (2007) Morphological responses to disturbance in wing-polymorphic carabid species (Coleoptera Carabidae) of managed urban grasslands. Baltic J Coleopterol 7:51–60Google Scholar
  73. Venn SJ, Kotze DJ, Lassila T, Niemelä JK (2013) Urban dry meadows provide valuable habitat for granivorous and xerophylic carabid beetles. J Insect Conserv 17:747–764CrossRefGoogle Scholar
  74. Vergnes A, Chantepie S, Robert A, Clergeau P (2013) Are urban green spaces suitable for woodland carabids? First insights from a short-term experiment. J Insect Conserv 17:671–679CrossRefGoogle Scholar
  75. Vergnes A, Pellissier V, Lemperiere G, Rollard C, Clergeau P (2014) Urban densification causes the decline of ground-dwelling arthropods. Biodivers Conserv 23:1859–1877CrossRefGoogle Scholar
  76. Wilcove DS (2010) Endangered species management: the US experience. In: Sodhi NS, Ehrlich PR (Eds.) Conservation biology for all. Oxford University PressGoogle Scholar
  77. Wilkinson DM (1999) The disturbing history of intermediate disturbance. Oikos 84:145–147CrossRefGoogle Scholar
  78. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science + Business Media, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ecology, Ecosystem Science/Plant EcologyTechnische Universität BerlinBerlinGermany
  2. 2.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
  3. 3.WaltropGermany
  4. 4.Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
  5. 5.Institute for Environmental SciencesUniversity of Koblenz-LandauLandauGermany

Personalised recommendations