Advertisement

Urban Ecosystems

, Volume 21, Issue 5, pp 831–850 | Cite as

Gross primary productivity of a large metropolitan region in midsummer using high spatial resolution satellite imagery

  • David L. Miller
  • Dar A. Roberts
  • Keith C. Clarke
  • Yang Lin
  • Olaf Menzer
  • Emily B. Peters
  • Joseph P. McFadden
Article
  • 198 Downloads

Abstract

Although gross primary productivity (GPP) is estimated with remote sensing over large regions of Earth, urban areas are usually excluded due to the lack of light use efficiency (LUE) parameters for urban vegetation and the spatial heterogeneity of urban land cover. Here, we estimated midsummer GPP, both within and among vegetation and land-use types, across the Minneapolis-Saint Paul, Minnesota metropolitan region. We derived LUE parameters for urban vegetation types using estimates of GPP from tree sap flow and eddy covariance CO2 flux observations, and from fraction of absorbed photosynthetically active radiation based on 2 m resolution WorldView-2 satellite imagery. Mean GPP per unit land area (including vegetation, impervious surfaces, and soil) was 2.64 g C m−2 d−1, and was 4.45 g C m−2 d−1 per unit vegetated area. Mapped GPP estimates were within 11.4% of estimates from independent tall tower eddy covariance measurements. Turf grass GPP had a larger coefficient of variation (0.18) than other vegetation classes (~0.10). Vegetation composition was largely consistent across the study area. Excluding golf courses, mean land-use GPP for the total study area varied more by percent vegetation cover (R2 = 0.98, p < 0.001) than by variability within vegetation classes (R2 = 0.21, p = 0.19). Urban GPP in general was less than half that of natural forests and grasslands in the same climate zone.

Keywords

Primary production Carbon cycle Land use Urban vegetation High spatial resolution remote sensing Light use efficiency 

Notes

Acknowledgements

The field measurements at KUOM were funded by a grant from the NASA Earth Science Division (NNG04GN80G) as a component of the North American Carbon Program (NACP), and the acquisition of the WorldView-2 imagery was funded by a grant from the NSF Dynamics of Coupled Natural and Human Systems Program (BCS-0908549).

Compliance with ethical standards

Competing interests

None declared.

References

  1. Adler-Golden S, Berk A, Bernstein LS et al (1998) FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations. In: Green RO (ed) Summaries of the seventh JPL airborne earth science workshop January 12–16, 1998. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, pp 9–14Google Scholar
  2. Ahl DE, Gower ST, Mackay DS, Burrows SN, Norman JM, Diak GR (2004) Heterogeneity of light use efficiency in a northern Wisconsin forest: implications for modeling net primary production with remote sensing. Remote Sens Environ 93:168–178.  https://doi.org/10.1016/j.rse.2004.07.003 CrossRefGoogle Scholar
  3. Akbari H, Rose LS, Taha H (2003) Analyzing the land cover of an urban environment using high-resolution orthophotos. Landsc Urban Plan 63:1–14.  https://doi.org/10.1016/S0169-2046(02)00165-2 CrossRefGoogle Scholar
  4. Alonzo M, McFadden JP, Nowak DJ, Roberts DA (2016) Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban For Urban Green 17:135–147.  https://doi.org/10.1016/j.ufug.2016.04.003 CrossRefGoogle Scholar
  5. Anthoni PM, Unsworth MH, Law BE, Irvine J, Baldocchi DD, Tuyl SV, Moore D (2002) Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agric For Meteorol 111:203–222.  https://doi.org/10.1016/S0168-1923(02)00021-7 CrossRefGoogle Scholar
  6. As-syakur AR, Osawa T, Adnyana IWS (2010) Medium spatial resolution satellite imagery to estimate gross primary production in an urban area. Remote Sens 2:1496–1507.  https://doi.org/10.3390/rs2061496 CrossRefGoogle Scholar
  7. Baldocchi DD (2008) “Breathing” of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26.  https://doi.org/10.1071/BT07151 CrossRefGoogle Scholar
  8. Bergeron O, Strachan IB (2011) CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city. Atmos Environ 45:1564–1573.  https://doi.org/10.1016/j.atmosenv.2010.12.043 CrossRefGoogle Scholar
  9. Buyantuyev A, Wu J (2009) Urbanization alters spatiotemporal patterns of ecosystem primary production: a case study of the Phoenix metropolitan region, USA. J Arid Environ 73:512–520.  https://doi.org/10.1016/j.jaridenv.2008.12.015 CrossRefGoogle Scholar
  10. Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Environ 5:80–88. https://doi.org/10.1890/1540-9295(2007)5[80:SHIUER]2.0.CO;2CrossRefGoogle Scholar
  11. Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag, New YorkGoogle Scholar
  12. Davis KJ, Bakwin PS, Yi C et al (2003) The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower. Glob Chang Biol 9:1278–1293.  https://doi.org/10.1029/2009JD012832 CrossRefGoogle Scholar
  13. DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Chang Biol 13:1157–1167.  https://doi.org/10.1111/j.1365-2486.2007.01365.x CrossRefGoogle Scholar
  14. Fry J, Huang B (2004) Applied turfgrass science and physiology. John Wiley and Sons, HobokenGoogle Scholar
  15. Fugro Horizons, Inc. and the Minnesota Department of Natural Resources (2012) LiDAR elevation, twin cities metro region, Minnesota, 2011. Minnesota Department of Natural Resources, St. Paul, MinnesotaGoogle Scholar
  16. Goulden ML, Daube BC, Fan S-M, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC (1997) Physiological responses of a black spruce forest to weather. J Geophys Res 102:28987–28996.  https://doi.org/10.1029/97JD01111 CrossRefGoogle Scholar
  17. Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M, Olah MR, Williams O (1998) Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65:227–248.  https://doi.org/10.1016/S0034-4257(98)00064-9 CrossRefGoogle Scholar
  18. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760.  https://doi.org/10.1126/science.1150195 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Groffman PM, Cavender-Bares J, Bettez ND, Grove JM, Hall SJ, Heffernan JB, Hobbie SE, Larson KL, Morse JL, Neill C, Nelson K, O'Neil-Dunne J, Ogden L, Pataki DE, Polsky C, Chowdhury RR, Steele MK (2014) Ecological homogenization of urban USA. Front Ecol Environ 12:74–81.  https://doi.org/10.1890/120374 CrossRefGoogle Scholar
  20. Hagishima A, Narita KI, Tanimoto J (2007) Field experiment on transpiration from isolated urban plants. Hydrol Process 21:1217–1222.  https://doi.org/10.1002/hyp.6681 CrossRefGoogle Scholar
  21. Ham JM, Knapp AK (1998) Fluxes of CO2 water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agric For Meteorol 89:1–14.  https://doi.org/10.1016/S0168-1923(97)00062-2 CrossRefGoogle Scholar
  22. Hardiman BS, Wang JA, Hutyra LR, Gately CK, Getson JM, Friedl MA (2017) Accounting for urban biogenic fluxes in regional carbon budgets. Sci Total Environ 592:366–372.  https://doi.org/10.1016/j.scitotenv.2017.03.028 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hedblom M, Lindberg F, Vogel E, Wissman J, Ahrné K (2017) Estimating urban lawn cover in space and time: case studies in three Swedish cities. Urban Ecosyst 20:1109–1119.  https://doi.org/10.1007/s11252-017-0658-1 CrossRefGoogle Scholar
  24. Heinsch FA, Running SW, Kimball JS et al (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans Geosci Remote Sens 44:1908–1925.  https://doi.org/10.1109/TGRS.2005.853936 CrossRefGoogle Scholar
  25. Herold M, Roberts DA, Gardner ME, Dennison PE (2004) Spectrometry for urban area remote sensing - development and analysis of a spectral library from 350 to 2400 nm. Remote Sens Environ 91:304–319.  https://doi.org/10.1016/j.rse.2004.02.013 CrossRefGoogle Scholar
  26. Hilker T, Coops NC, Wulder MA, Black TA, Guy RD (2008) The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. Sci Total Environ 404:411–423.  https://doi.org/10.1016/j.scitotenv.2007.11.007 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hiller RV, McFadden JP, Kljun N (2011) Interpreting CO2 fluxes over a suburban Lawn: the influence of traffic emissions. Boundary-Layer Meteorol 138:215–230.  https://doi.org/10.1007/s10546-010-9558-0 CrossRefGoogle Scholar
  28. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309.  https://doi.org/10.1016/0034-4257(88)90106-X CrossRefGoogle Scholar
  29. Hutyra LR, Yoon B, Alberti M (2011) Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Glob Chang Biol 17:783–797.  https://doi.org/10.1111/j.1365-2486.2010.02238.x CrossRefGoogle Scholar
  30. Imhoff ML, Bounoua L, DeFries R, Lawrence WT, Stutzer D, Tucker CJ, Ricketts T (2004) The consequences of urban land transformation on net primary productivity in the United States. Remote Sens Environ 89:434–443.  https://doi.org/10.1016/j.rse.2003.10.015 CrossRefGoogle Scholar
  31. Järvi L, Nordbo A, Junninen H, Riikonen A, Moilanen J, Nikinmaa E, Vesala T (2012) Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006-2010. Atmos Chem Phys 12:8475–8489.  https://doi.org/10.5194/acp-12-8475-2012 CrossRefGoogle Scholar
  32. Jia X, Richards JA (1994) Efficient maximum likelihood classification for imaging spectrometer data sets. IEEE Trans Geosci Remote Sens 32:274–281.  https://doi.org/10.1109/36.295042 CrossRefGoogle Scholar
  33. Kim J, Hogue TS (2012) Evaluation and sensitivity testing of a coupled Landsat-MODIS downscaling method for land surface temperature and vegetation indices in semi-arid regions. J Appl Remote Sens 6:63569.  https://doi.org/10.1117/1.JRS.6.063569 CrossRefGoogle Scholar
  34. Kjelgren R, Montague T (1998) Urban tree transpiration over turf and asphalt surfaces. Atmos Environ 32:35–41.  https://doi.org/10.1016/S1352-2310(97)00177-5 CrossRefGoogle Scholar
  35. Kljun N, Calanca P, Rotachhi MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112:503–523.  https://doi.org/10.1023/B:BOUN.0000030653.71031.96 CrossRefGoogle Scholar
  36. Kordowski K, Kuttler W (2010) Carbon dioxide fluxes over an urban park area. Atmos Environ 44:2722–2730.  https://doi.org/10.1016/j.atmosenv.2010.04.039 CrossRefGoogle Scholar
  37. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260.  https://doi.org/10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
  38. Menzer O, McFadden JP (2017) Statistical partitioning of a three-year time series of direct urban net CO 2 flux measurements into biogenic and anthropogenic components. Atmos Environ 170:319–333.  https://doi.org/10.1016/j.atmosenv.2017.09.049 CrossRefGoogle Scholar
  39. Menzer O, Meiring W, Kyriakidis PC, McFadden JP (2015) Annual sums of carbon dioxide exchange over a heterogeneous urban landscape through machine learning based gap-filling. Atmos Environ 101:312–327.  https://doi.org/10.1016/j.atmosenv.2014.11.006 CrossRefGoogle Scholar
  40. Metropolitan Council (2011) Generalized land use 2010 for the twin cities metropolitan area. Metropolitan Council, St. Paul, MinnesotaGoogle Scholar
  41. Metropolitan Council (2013) Lakes and rivers – open water features. Metropolitan Council, St. Paul, MinnesotaGoogle Scholar
  42. Metropolitan Council (2015) MetroStats report. The twin cities region’s local forecasts. Metropolitan Council. https://metrocouncil.org/Data-and-Maps/Publications-And-Resources/MetroStats/Land-Use-and-Development/The-Twin-Cities-Region-s-Local-Forecasts.aspx. Accessed 31 May 2018
  43. Metropolitan Mosquito Control District (2012) Metro Wetlands and Wet Areas (MMCD). Metropolitan Mosquito Control District, St. Paul, MinnesotaGoogle Scholar
  44. Meyers TP, Hollinger SE (2004) An assessment of storage terms in the surface energy balance of maize and soybean. Agric For Meteorol 125:105–115.  https://doi.org/10.1016/j.agrformet.2004.03.001 CrossRefGoogle Scholar
  45. Milesi C, Elvidge CD, Nemani RR, Running SW (2003) Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens Environ 86:401–410.  https://doi.org/10.1016/S0034-4257(03)00081-6 CrossRefGoogle Scholar
  46. Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36:426–438.  https://doi.org/10.1007/s00267-004-0316-2 CrossRefGoogle Scholar
  47. Minnesota Department of Natural Resources and Surdex Corporation (2010) Digital orthoimagery, twin cities, spring 2010, 1-ft resolution. Minnesota Department of Natural Resources, St. PaulGoogle Scholar
  48. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766.  https://doi.org/10.2307/2401901 CrossRefGoogle Scholar
  49. Myeong S, Nowak DJ, Hopkins PF, Brock RH (2001) Urban cover mapping using digital, high-spatial resolution aerial imagery. Urban Ecosyst 5:243–256.  https://doi.org/10.1023/A:1025687711588 CrossRefGoogle Scholar
  50. Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011) Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ 115:1145–1161.  https://doi.org/10.1016/j.rse.2010.12.017 CrossRefGoogle Scholar
  51. Noormets A, Chen J, Crow TR (2007) Age-dependent changes in ecosystem fluxes in managed forests in northern Wisconsin, USA. Ecosystems 10:187–203.  https://doi.org/10.1007/s10021-007-9018-y CrossRefGoogle Scholar
  52. Novick KA, Stoy PC, Katul GG, Ellsworth DS, Siqueira MBS, Juang J, Oren R (2004) Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia 138:259–274.  https://doi.org/10.1007/s00442-003-1388-z CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nowak DJ (1994) Atmospheric carbon dioxide reduction by Chicago’s urban forest. In: EG MP, Nowak DJ, Rowntree RA (eds) Chicago’s urban Forest ecosystem: results of the Chicago urban Forest ecosystem. USDA Forest Service general technical report NE-186, Radnor, pp 83–94Google Scholar
  54. Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green 4:115–123.  https://doi.org/10.1016/j.ufug.2006.01.007 CrossRefGoogle Scholar
  55. Ogutu BO, Dash J (2013) Assessing the capacity of three production efficiency models in simulating gross carbon uptake across multiple biomes in conterminous USA. Agric For Meteorol 174–175:158–169.  https://doi.org/10.1016/j.agrformet.2013.02.016 CrossRefGoogle Scholar
  56. Oke TR (1989) The micrometeorology of the urban forest. Philos Trans R Soc B Biol Sci 324:335–349.  https://doi.org/10.1098/rstb.1989.0051 CrossRefGoogle Scholar
  57. Pataki DE, Alig RJ, Fung AS et al (2006) Urban ecosystems and the north American carbon cycle. Glob Chang Biol 12:2092–2102.  https://doi.org/10.1111/j.1365-2486.2006.01242.x CrossRefGoogle Scholar
  58. Peters EB, McFadden JP (2010) Influence of seasonality and vegetation type on suburban microclimates. Urban Ecosyst 13:443–460.  https://doi.org/10.1007/s11252-010-0128-5 CrossRefGoogle Scholar
  59. Peters EB, McFadden JP (2012) Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape. J Geophys Res Biogeosci 117:G03005.  https://doi.org/10.1029/2011JG001933 CrossRefGoogle Scholar
  60. Peters EB, Hiller RV, McFadden JP (2011) Seasonal contributions of vegetation types to suburban evapotranspiration. J Geophys Res Biogeosci 116:1–16.  https://doi.org/10.1029/2010JG001463 CrossRefGoogle Scholar
  61. Polsky C, Grove JM, Knudson C, Groffman PM, Bettez N, Cavender-Bares J, Hall SJ, Heffernan JB, Hobbie SE, Larson KL, Morse JL, Neill C, Nelson KC, Ogden LA, O'Neil-Dunne J, Pataki DE, Roy Chowdhury R, Steele MK (2014) Assessing the homogenization of urban land management with an application to US residential lawn care. Proc Natl Acad Sci 111:4432–4437.  https://doi.org/10.1073/pnas.1323995111 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Potapenko J (2014) High-resolution LiDAR Pointcloud data processing, computation, and visualization with application to the Erosion analysis of the California Channel islands. Thesis, University of California Santa BarbaraGoogle Scholar
  63. Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35:1566–1575.  https://doi.org/10.2134/jeq2005.0215 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Qian YL, Follett RF (2002) Assessing soil carbon sequestration in turfgrass systems using long-term soil testing data. Agron J 94:930–935.  https://doi.org/10.2134/agronj2002.9300 CrossRefGoogle Scholar
  65. Raciti SM, Hutyra LR, Newell JD (2014) Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods. Sci Total Environ 500–501:72–83.  https://doi.org/10.1016/j.scitotenv.2014.08.070 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11(9):1424–1439CrossRefGoogle Scholar
  67. Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res Atmos 99:5263–5283.  https://doi.org/10.1029/93JD03221 CrossRefGoogle Scholar
  68. Running SW, Zhao M (2015) User’s guide daily GPP and annual NPP (MOD17A2/A3) products NASA earth observing system MODIS land algorithm version 3.0 for collection 6. 1–28Google Scholar
  69. Sen Roy S, Yuan F (2009) Trends in extreme temperatures in relation to urbanization in the Twin Cities metropolitan area , Minnesota. J Appl Meteorol Climatol 43:669–679.  https://doi.org/10.1175/2008JAMC1983.1 CrossRefGoogle Scholar
  70. Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A 109:16083–16088.  https://doi.org/10.1073/pnas.1211658109 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sims DA, Luo HY, Hastings S et al (2006) Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sens Environ 103:289–303.  https://doi.org/10.1016/j.rse.2005.01.020 CrossRefGoogle Scholar
  72. Soegaard H, Møller-Jensen L (2003) Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements. Remote Sens Environ 87:283–294.  https://doi.org/10.1016/S0034-4257(03)00185-8 CrossRefGoogle Scholar
  73. Song J, Liao K, Coulter RL, Lesht BM (2005) Climatology of the low-level jet at the southern Great Plains atmospheric boundary layer experiments site. J Appl Meteorol 44:1593–1606.  https://doi.org/10.1175/JAM2294.1 CrossRefGoogle Scholar
  74. Song C, Dannenberg MP, Hwang T (2013) Optical remote sensing of terrestrial ecosystem primary productivity. Prog Phys Geogr 37:834–854.  https://doi.org/10.1177/0309133313507944 CrossRefGoogle Scholar
  75. Spronken-Smith RA, Oke TR, Lowry WP (2000) Advection and the surface energy balance across an irrigated urban park. Int J Climatol 20:1033–1047.  https://doi.org/10.1002/1097-0088(200007)20:9<1033::AID-JOC508>3.3.CO;2-L CrossRefGoogle Scholar
  76. Strohbach MW, Haase D (2012) Above-ground carbon storage by urban trees in Leipzig, Germany: analysis of patterns in a European city. Landsc Urban Plan 104:95–104.  https://doi.org/10.1016/j.landurbplan.2011.10.001 CrossRefGoogle Scholar
  77. Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Chang Biol 7:279–289.  https://doi.org/10.1046/j.1365-2486.2001.00407.x CrossRefGoogle Scholar
  78. Tigges J, Churkina G, Lakes T (2017) Modeling above-ground carbon storage: a remote sensing approach to derive individual tree species information in urban settings. Urban Ecosyst 20:97–111.  https://doi.org/10.1007/s11252-016-0585-6 CrossRefGoogle Scholar
  79. Todhunter PE (1996) Environmental indices for the twin cities metropolitan area (Minnesota, USA) urban heat island - 1989. Clim Res 6:59–69CrossRefGoogle Scholar
  80. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150.  https://doi.org/10.1016/0034-4257(79)90013-0 CrossRefGoogle Scholar
  81. Turner DP, Ritts WD, Cohen WB, Maeirsperger TK, Gower ST, Kirschbaum AA, Running SW, Zhao M, Wofsy SC, Dunn AL, Law BE, Campbell JL, Oechel WC, Kwon HJ, Meyers TP, Small EE, Kurc SA, Gamon JA (2005) Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Glob Chang Biol 11:666–684.  https://doi.org/10.1111/j.1365-2486.2005.00936.x CrossRefGoogle Scholar
  82. Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ 102:282–292.  https://doi.org/10.1016/j.rse.2006.02.017 CrossRefGoogle Scholar
  83. Wetherley EB, Roberts DA, McFadden JP (2017) Mapping spectrally similar urban materials at sub-pixel scales. Remote Sens Environ 195:170–183.  https://doi.org/10.1016/j.rse.2017.04.013 CrossRefGoogle Scholar
  84. Winkler JA, Skaggs RH, Baker DG (1981) Effect of temperature adjustments on the Minneapolis-St. Paul urban heat island J Appl Meteorol 20:1295–1300.  https://doi.org/10.1175/1520-0450(1981)020<1295:EOTAOT>2.0.CO;2 CrossRefGoogle Scholar
  85. Wofsy SC, Goulden ML, Munger JW et al (1993) Net exchange of CO2 in a mid-latitude forest. Science 260(5112):1314–1317.  https://doi.org/10.1126/science.260.5112.1314 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wu J, Bauer ME (2012) Estimating net primary production of turfgrass in an urban-suburban landscape with QuickBird imagery. Remote Sens 4:849–866.  https://doi.org/10.3390/rs4040849 CrossRefGoogle Scholar
  87. Wu C, Chen JM, Desai AR, Hollinger DY, Arain MA, Margolis HA, Gough CM, Staebler RM (2012) Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery. Remote Sens Environ 118:60–72.  https://doi.org/10.1016/j.rse.2011.11.012 CrossRefGoogle Scholar
  88. Yang F, Ichii K, White MA, Hashimoto H, Michaelis AR, Votava P, Zhu AX, Huete A, Running SW, Nemani RR (2007) Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sens Environ 110:109–122.  https://doi.org/10.1016/j.rse.2007.02.016 CrossRefGoogle Scholar
  89. Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sens Environ 98:317–328.  https://doi.org/10.1016/j.rse.2005.08.006 CrossRefGoogle Scholar
  90. Yuan W, Liu S, Zhou G, Zhou G, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu Y, Law BE, Stoy PC, Vesala T, Wofsy SC (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol 143:189–207.  https://doi.org/10.1016/j.agrformet.2006.12.001 CrossRefGoogle Scholar
  91. Zhao T, Brown DG, Bergen KM (2007) Increasing gross primary production (GPP) in the urbanizing landscapes of southeastern Michigan. Photogramm Eng remote Sens 73:1159–1167.  https://doi.org/10.14358/PERS.73.10.1159 CrossRefGoogle Scholar
  92. Zhao T, Brown DG, Fang H, Theobald DM, Liu T, Zhang T (2012) Vegetation productivity consequences of human settlement growth in the eastern United States. Landsc Ecol 27:1149–1165.  https://doi.org/10.1007/s10980-012-9766-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA
  3. 3.Minnesota Department of Natural ResourcesSt. PaulUSA

Personalised recommendations