Advertisement

Urban Ecosystems

, Volume 21, Issue 4, pp 615–623 | Cite as

Energy crop production in an urban area: a comparison of habitat types and land use forms targeting economic benefits and impact on species diversity

  • Stefan Brunzel
  • Jacinta Kellermann
  • Milen Nachev
  • Bernd Sures
  • Daniel Hering
Article

Abstract

In urban areas, the potential of biomass production is rarely utilized, although many biomass sources are located in cities, ranging from road margins to public parks. There is, however, increasing interest in these potential biomass sources, as they are close to consumers and provide options to reduce maintenance costs of urban green areas. We analyzed the costs and benefits of utilizing biomass, and compared it to the biodiversity maintained on 17 urban land use forms the Ruhr Metropolitan Area (Germany). Economic costs and benefits were reflected by contribution margins, while biodiversity was measured by species numbers of plants, birds and butterflies. For the 17 land use types, there is a weak overall correlation between contribution margins and species numbers. However, this is mainly due to the two land use forms with the highest contribution margins (cultivation of energy maize and fertilized grassland), which are characterized by the lowest species numbers. For the remaining cases, there is no relationship between contribution margins and species numbers. Comparatively high contribution margins and high mean species numbers were observed for road margins, industrial fallows with wood cutting for biogas production and water-influenced grassland mown traditionally. We conclude that biomass production and the maintenance of urban biodiversity is not necessarily a contradiction.

Keywords

Urban biodiversity Biomass Contribution margin Industrial fallows Higher plants Birds Butterflies Ruhr metropolitan area 

Notes

Acknowledgements

This study was financed by the project KuLaRuhr as part of the German Federal Ministry of Education and Research programme ‘Sustainable land use’ (BMBF, project number: 033L020A, www.kularuhr.de).

Supplementary material

11252_2018_754_MOESM1_ESM.doc (22 kb)
ESM 1 (DOC 21 kb)

References

  1. BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung), 2010. Potenzialanalyse und Handlungsoptionen zur Nutzung von Biomasse auf Recyclingflächen. BMVBS-Online-Publikation, Nr. 28/2010, BerlinGoogle Scholar
  2. Brandt K, Glemnitz M (2014) Assessing the regional impacts of increased energy maize cultivation on farmland birds. Environ Monit Assess 186:679–697CrossRefPubMedGoogle Scholar
  3. Brunzel S, Fischer SF, Schneider J, Jetzkowitz J, Brandl R (2009) Neo- and archaeophytes respond more strongly than natives to socio-economic mobility- and disturbance patterns along an urban-rural gradient. J Biogeogr 36:835–844CrossRefGoogle Scholar
  4. Callesen I, Grohnheit PE, Ostergard H (2010) Optimization of bioenergy yield from cultivated land in Denmark. Biomass Bioenergy 34:1348–1362CrossRefGoogle Scholar
  5. Catford JA, Naiman RJ, Chambers LE, Roberts J, Douglas M, Davies P (2013) Predicting novel riparian ecosystems in a changing climate. Ecosystems 16:382–400CrossRefGoogle Scholar
  6. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRefPubMedGoogle Scholar
  7. Fischer LK, von der Lippe M, Rillig MC, Kowarik I (2013) Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol Conserv 159:119–126CrossRefGoogle Scholar
  8. FNR (Fachagentur Nachwachsende Rohstoffe e.V.) 2014. Biobrennstoffe – Preise. http://www.fnr.de/service/kosten-preise/preise-bioenergie. Accessed at 20.5.2016
  9. Gevers J, Hoye TT, Topping CJ, Glemnitz M, Schröder B (2011) Biodiversity and the mitigation of climate change through bioenergy: impacts of increased maize cultivation on farmland wildlife. GBC Bioenergy 3:472–482Google Scholar
  10. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810CrossRefPubMedGoogle Scholar
  11. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12945CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kellermann J, 2012. Nachhaltigkeitsorientierte Diskontierung in wirtschaftlichen Ex-ante-Analysen zur Fundierung umweltrelevanter Entscheidungen. Verlag Dr. Kovac, HamburgGoogle Scholar
  13. LANUV (Landesamt für Natur, Umwelt- und Verbraucherschutz Nordrhein-Westfalen), 2011. Rote Liste und Artenverzeichnis der Farn- und Blütenpflanzen – Pteridophyta et Spermatophyta – in Nordrhein-Westfalen. LANUV (Ed.), 4. edition, Theatr RecGoogle Scholar
  14. LWK NRW (Landwirtschaftskammer Nordrhein-Westfalen) 2012 Steckbriefe Energiepflanzen. http://www.landwirtschaftskammer.de/landwirtschaft/ackerbau.../pdf/steckbriefe-energiepflanzen.pdf, accessed at 20.4.2016
  15. Mao Y, Yannarell AC, Davis SC, Mackie RI (2013) Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environ Microbiol 15:928–942CrossRefPubMedGoogle Scholar
  16. Meffert PJ, Dziock F (2012) What determines occurrence of threatened bird species on urban wastelands? Biol Conserv 153:87–96CrossRefGoogle Scholar
  17. Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosystems 17:305–327CrossRefGoogle Scholar
  18. Niemela J (1999) Ecology and urban planning. Biodivers Conserv 1:119–131CrossRefGoogle Scholar
  19. Paker Y, Yom-Tov Y, Alon-Mozes T, Barnea A (2014) The effect of plant richness and urban garden structure on bird species richness, diversity and community structure. Landsc Urban Plan 122:186–195CrossRefGoogle Scholar
  20. Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc Ecol 25:941–954CrossRefGoogle Scholar
  21. Sauerbrei R, Ekschmitt K, Wolters V, Gottschalk TK (2014) Increased energy maize production reduces farmland bird diversity. GBC Bioenergy 6:265–274Google Scholar
  22. Savard JPL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landsc Urban Plan 48:131–142CrossRefGoogle Scholar
  23. Schneider U, Stilling G, Woltering C (2012) Positive Trends gestoppt, negative Trends beschleunigt. Bericht zur regionalen Armutsentwicklung in Deutschland 2012. Der Paritätische Gesamtverband, Berlin 25 ppGoogle Scholar
  24. Seifert C, Leuschner C, Meyer S, Culmsee H (2014) Inter-relationships between crop type, management intensity and light transmissivity in annual crop systems and their effect on farmland plant diversity. Agric Ecosyst Environ 195:173–182CrossRefGoogle Scholar
  25. Seto KC, Gueneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A 109:16083–16088CrossRefPubMedPubMedCentralGoogle Scholar
  26. Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33:56–106CrossRefGoogle Scholar
  27. Sudfeldt C, Bairlein F, Dröschmeister R, König C, Langgemach T & Wahl J 2012. Vögel in Deutschland 2012. Dachverband Deutscher Avifaunisten, Münster, 55 pp.Google Scholar
  28. Sures B, Dangel DR, Eisinger M, D, Dettmar J 2015. Natur und Lebensqualität: Nachhaltige Urbane Kulturlandschaft Metropole Ruhr (KuLaRuhr). Natur und Landschaft, 90, 354–359Google Scholar
  29. Werling BP, Dickson TL, Isaacs R, Gaines H, Gratton C, Gross KL, Liere H, Malmstrom CM, Meehan TD, Ruan L, Robertson BA, Robertson GP, Schmidt TM, Schrotenboer AC, Teal TK, Wilson JK, Landis DA (2014) Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc Natl Acad Sci U S A 111:1652–1657CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wittig R, Diesing G, Gödde M (1985) Urbanophob–Urbanoneutral–Urbanophil. Das Verhalten der Arten gegenüber dem Lebensraum Stadt. Flora 177:265–282CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Stefan Brunzel
    • 1
    • 2
  • Jacinta Kellermann
    • 3
  • Milen Nachev
    • 1
  • Bernd Sures
    • 1
    • 4
  • Daniel Hering
    • 1
  1. 1.Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU)University of Duisburg-EssenEssenGermany
  2. 2.Faculty of Landscape Architecture, Horticulture and ForestryErfurt University of Applied ScienceErfurtGermany
  3. 3.Department of Environmental Management and ControllingUniversity of Duisburg EssenEssenGermany
  4. 4.Department of ZoologyUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations