Advertisement

Urban Ecosystems

, Volume 21, Issue 4, pp 751–764 | Cite as

Spatial and genetic distribution of a north American termite, Reticulitermes flavipes, across the landscape of Paris

  • Guillaume Baudouin
  • Nicolas Bech
  • Anne-Geneviève Bagnères
  • Franck Dedeine
Article
  • 76 Downloads

Abstract

Urbanization often negatively impacts biological diversity. Some organisms, however, have traits that are preadapted to urban environments and thus may thrive. Reticulitermes flavipes is one such organism. Indigenous to the Eastern US, it has been introduced into multiple countries. In France, R. flavipes causes major damage to buildings. Although Paris is one of the country’s most infested cities, the factors determining R. flavipes’ distribution and propagation are poorly understood. Using data on termite occurrence, termite genetics, and environmental variables, our study aims to identify factors that explain the distribution and spread of R. flavipes within Paris. First, we explored the association between several environmental variables and the termite’s distribution pattern in Paris; since 2000, a total of 2106 infestations have been recorded. Second, we inferred termite population and colony genetic structure at 66 sample locations using 9 microsatellite loci. Third, we used least-cost models and partial Mantel tests to study the effects of environmental variables on the termite’s population genetic structure. Our analyses revealed that building-related variables were significantly associated with termite infestations and could thus help explain the termite’s spatial distribution pattern. Furthermore, railway networks also explain termite propagation and genetic patterns. Additionally, we found that the termite’s spread is likely driven by budding dispersal, which may be constrained by buildings and roads. Even if budding dispersal could facilitate R. flavipes’ spread in urban areas, it cannot explain the termite’s distribution in Paris all on its own. Indeed, termite propagation seems to be significantly driven by anthropogenic activities.

Keywords

Urban pest Landscape genetics Human-mediated dispersal Biological invasions Breeding structure 

Notes

Acknowledgements

This study is part of G. Baudouin’s PhD research. We are grateful to Simon Dupont for providing samples. We are also grateful to Tony Dié and Matthieu Vachon of Pharmabois for providing some of the 2016 samples. We wish to thank Claude Marès and Sylvain Genty of Paris City Hall for sharing their knowledge about termite in Paris. We also wish to thank J. Pearce for her English editing services, Dominique Andrieu for his comments on the first draft of the manuscript, and Stephanie Bankhead-Dronnet and Christelle Suppo for their helpful comments. This work was funded by a contract (to A-G Bagnères) that was established between the French National Center for Scientific Research (CNRS) and the city of Paris (Direction du Logement et de l’Habitat).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aluko GA, Husseneder C (2007) Colony dynamics of the formosan subterranean termite in a frequently disturbed urban landscape. J Econ Entomol 100:1037–1046CrossRefPubMedGoogle Scholar
  2. Andrieu D, Perdereau E, Robinet C et al (2017) Géographie des termites souterrains en région Centre-Val de Loire: le risque d’une espèce invasive. Cybergeo.  https://doi.org/10.4000/cybergeo.28412
  3. Arango RA, Marschalek DA, Green III F, Raffa KF, Berres ME (2015) Genetic analysis of termite colonies in Wisconsin. Environ Entomol 44(3):890–897CrossRefPubMedGoogle Scholar
  4. Ascunce MS, Yang C-C, Oakey J et al (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068CrossRefPubMedGoogle Scholar
  5. Bagnères A-G, Clément J-C, Blum MS et al (1990) Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): polymorphism and chemotaxonomy. J Chem Ecol 16:3213–3244CrossRefPubMedGoogle Scholar
  6. Baudouin G, Dedeine F, Bech N, Bankhead-Dronnet S, Dupont S, Bagnères A-G (2017) An American termite in Paris: temporal colony dynamics. Genetica 145(6):491–502CrossRefPubMedGoogle Scholar
  7. Botch PS, Houseman RM (2016) Landscape patterns of colonization by subterranean termites (Isoptera: Rhinotermitidae) in Missouri neighborhoods. J Econ Entomol 109:800–808CrossRefPubMedGoogle Scholar
  8. Bourguignon T, Chisholm RA, Evans TA (2016) The termite worker phenotype evolved as a dispersal strategy for fertile wingless individuals before eusociality. Am Nat 187:372–387CrossRefPubMedGoogle Scholar
  9. Brossette L, Bagnères A-G, Millot A, Blanchard S, Dupont S, Lucas C (2017) Termite’s royal cradle: does colony foundation success differ between two subterranean species? Insect Soc 64:515–523.  https://doi.org/10.1007/s00040-017-0571-x CrossRefGoogle Scholar
  10. Buchli HR (1958) L’origine des castes et les potentialités ontogéniques des Termites Européens du genre Reticulitermes (Holmgren). Masson, ParisGoogle Scholar
  11. Buczkowski G, Bertelsmeier C (2017) Invasive termites in a changing climate: a global perspective. Ecol Evol 7:974–985CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bulmer MS, Adams ES, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236–243CrossRefGoogle Scholar
  13. Chambers JM, Hastie TJ (1992) Linear models. Chapter 4 of statistical models. In: Chambers JM, Hastie TJ (eds) Statistical models in S. Wadsworth & Brooks/Cole, Belmont/Pacific GroveGoogle Scholar
  14. Clément J-L, Bagnères A-G, Uva P et al (2001) Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insect Soc 48:202–215CrossRefGoogle Scholar
  15. De Pieri F (2017) Paris Haussmann: modèle de ville/Paris Haussmann: a model’s relevance. Plan Perspect 32(4):658–659CrossRefGoogle Scholar
  16. DeHeer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13(2):431–441CrossRefPubMedGoogle Scholar
  17. DeHeer CJ, Vargo EL (2008) Strong mitochondrial DNA similarity but low relatedness at microsatellite loci among families within fused colonies of the termite Reticulitermes flavipes. Insect Soc 55(2):190–199CrossRefGoogle Scholar
  18. DeHeer CJ, Kutnik M, Vargo EL, Bagnères A-G (2005) The breeding system and population structure of the termite Reticulitermes grassei in southwestern France. Heredity 95:408–415CrossRefPubMedGoogle Scholar
  19. Devroye L, Wagner TJ (1982) Nearest neighbor methods in discrimination. In: Krishnaiah PR, Kanal LN (eds) Handbook of statistics. North-Holland Publishing Company, Amsterdam, pp 193–197Google Scholar
  20. Dronnet S, Bagnères A-G, Juba TR, Vargo EL (2004) Polymorphic microsatellite loci in the European subterranean termite, Reticulitermes santonensis Feytaud. Mol Ecol Notes 4:127–129CrossRefGoogle Scholar
  21. Dronnet S, Chapuisat M, Vargo EL et al (2005) Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol Ecol 14:1311–1320CrossRefPubMedGoogle Scholar
  22. Dronnet S, Lohou C, Christidès J-P, Bagnères A-G (2006) Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis (Feytaud). J Chem Ecol 32:1027–1042CrossRefPubMedGoogle Scholar
  23. Ebdon D (1985) Statistics in geography. Blackwell, OxfordGoogle Scholar
  24. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474CrossRefPubMedGoogle Scholar
  25. Ewart D, Nunes L, De Troya T, Kutnik M (2017) Termite and a changing climate. In: Dhang P (ed) Climate change impact on urban pests. CABI, Wallingford, pp 80–94CrossRefGoogle Scholar
  26. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Lausanne University, Lausanne. http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 13 Dec 2016
  27. Grace JK (1990) Mark-recapture studies with Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 16:297–303Google Scholar
  28. Gruber B, Adamack AT (2015) landgenreport : a new R function to simplify landscape genetic analysis using resistance surface layers. Mol Ecol Resour 15:1172–1178CrossRefPubMedGoogle Scholar
  29. Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  30. Hanna C, Cook ED, Thompson AR et al (2013) Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biol Invasions 16:283–294CrossRefGoogle Scholar
  31. Hollander M, Wolfe DA (1973) Nonparametric statistical methods. Wiley, New York, pp 115–120Google Scholar
  32. Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233CrossRefGoogle Scholar
  33. Houseman RM, Gold RE, Pawson BM (2001) Resource partitioning in two sympatric species of subterranean termites, Reticulitermes flavipes and Reticulitermes hageni (Isoptera : Rhinotermitidae). Environ Entomol 30:673–685CrossRefGoogle Scholar
  34. Husseneder C, Messenger MT, Su N et al (2005) Colony social organization and population genetic structure of an introduced population of formosan subterranean termite from New Orleans, Louisiana. J Econ Entomol 98:1421–1434CrossRefPubMedGoogle Scholar
  35. Husseneder C, Powell JE, Grace JK et al (2008) Worker size in the formosan subterranean termite in relation to colony breeding structure as inferred from molecular markers. Environ Entomol 37:400–408CrossRefPubMedGoogle Scholar
  36. Husseneder C, Simms DM, Delatte JR et al (2012) Genetic diversity and colony breeding structure in native and introduced ranges of the formosan subterranean termite, Coptotermes formosanus. Biol Invasions 14:419–437CrossRefGoogle Scholar
  37. Kaspari M, Vargo EL (1995) Colony size as a buffer against seasonality Bergmann’s rule in social insects. Am Nat 145:610–632CrossRefGoogle Scholar
  38. Korb J, Hartfelder K (2008) Life history and development: a framework for understanding developmental plasticity in lower termites. Biol Rev 83:295–313CrossRefPubMedGoogle Scholar
  39. Kusaka A, Matsuura K (2017) Allee effect in termite colony formation: influence of alate density and flight timing on pairing success and survivorship. Insec Soc 65:17–24.  https://doi.org/10.1007/s00040-017-0580-9 CrossRefGoogle Scholar
  40. Landguth EL, Cushman SA, Schwartz MK et al (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191CrossRefPubMedGoogle Scholar
  41. Lee S-H, Su N-Y, Bardunias P (2007) Exploring landscape structure effect on termite territory size using a model approach. Biosystems 90:890–896CrossRefPubMedGoogle Scholar
  42. Leniaud L, Pichon A, Uva P, Bagnères A-G (2009) Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species. Bull Entomol Res 99:1–10CrossRefPubMedGoogle Scholar
  43. Leniaud L, Darrouzet E, Dedeine F et al (2011) Ontogenic potentialities of the worker caste in two sympatric subterranean termites in France. Evol Dev 13:138–148CrossRefPubMedGoogle Scholar
  44. Lenz M, Kard B, Evans TA et al (2009) Differential use of identical food resources by Reticulitermes flavipes (Isoptera : Rhinotermitidae ) in two types of habitats. Entomol Soc Am 38:35–42Google Scholar
  45. Lohou C, Burban G, Clément J-L (1997) Protection des arbres d’alignement contre les termites souterrains: l’expérience menée à Paris. Phytoma - la défense des végétaux 492:42–44Google Scholar
  46. Long C, Thorne BL (2006) Resource fidelity, brood distribution and foraging dynamics in complete laboratory colonies of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ethol Ecol Evol 18:113–125CrossRefGoogle Scholar
  47. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  48. Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. PNAS 107(29):12963–12968CrossRefPubMedGoogle Scholar
  49. McDonnell MJ, Hahs AK (2015) Adaptation and adaptedness of organisms to urban environments. Annu Rev Ecol Evol Syst 46:261–280CrossRefGoogle Scholar
  50. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 27:247–206CrossRefGoogle Scholar
  51. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  52. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561CrossRefPubMedGoogle Scholar
  53. Moller H (1996) Lessons for invasion theory from social insects. Biol Conserv 78:125–142CrossRefGoogle Scholar
  54. Møller AP (2009) Successful city dwellers: a comparative study of the ecological characteristics of urban birds in the western Palearctic. Oecologia 159:849–858CrossRefPubMedGoogle Scholar
  55. Nei M (1987) Molecular evolutionary genetics. Columbia university press, New YorkGoogle Scholar
  56. Nobre T, Nunes L, Bignell DE (2008) Colony interactions in Reticulitermes grassei population assessed by molecular genetic methods. Insect Soc 55:66–73CrossRefGoogle Scholar
  57. Paulmier I, Vauchot B, Pruvost A, et al (1997) Evaluation of two populations of Reticulitermes santonensis Feytaud (Isoptera) by triple mark-recapture procedure. In: 28th Annual meeting of the international group of wood preservation. Whistler, pp 25–30Google Scholar
  58. Pecheux J (1975) L’Age d’or du rail Européen 1850–1900. Berger-Lev, Paris, p 253Google Scholar
  59. Perdereau E, Bagnères A-G, Dupont S, Dedeine F (2010) High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insect Soc 57:393–402CrossRefGoogle Scholar
  60. Perdereau E, Dedeine F, Christidès J-P et al (2011) Competition between invasive and indigenous species : an insular case study of subterranean termites. Biol Invasions 13:1457–1470CrossRefGoogle Scholar
  61. Perdereau E, Bagnères A-G, Bankhead-Dronnet S et al (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol Ecol 22:1105–1119CrossRefPubMedGoogle Scholar
  62. Perdereau E, Bagnères A-G, Vargo EL et al (2015) Relationship between invasion success and colony breeding structure in a subterranean termite. Mol Ecol 24:2125–2142CrossRefPubMedGoogle Scholar
  63. Pichon A, Kutnik M, Leniaud L et al (2007) Development of experimentally orphaned termite worker colonies of two Reticulitermes species (Isoptera : Rhinotermitidae). Sociobiology 50:1015–1034Google Scholar
  64. Pumain D (2012) Une théorie géographique pour la loi de Zipf. Région et Développement 36:31–54Google Scholar
  65. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefPubMedGoogle Scholar
  66. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and Ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  67. Rust MK, Su N (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375CrossRefPubMedGoogle Scholar
  68. Shelton TG, Hu XP, Appel AG, Wagner TL (2006) Flight speed of tethered Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) alates. J Insect Behav 19:115–128CrossRefGoogle Scholar
  69. Spear SF, Storfer A (2010) Anthropogenic and natural disturbance lead to differing patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biol Conserv 143:778–786CrossRefGoogle Scholar
  70. Su N-Y, Scheffrahn RH (1990) Economically important termites in the United States and their control. Sociobiology 17:77–94Google Scholar
  71. Su N-Y, Ban PM, Scheffrahn RH (1993) Foraging populations and territories of the eastern subterranean termite (Isoptera: Rhinotermitidae) in southeastern Florida. Entomol Sci 22:1113–1117Google Scholar
  72. Sukopp H (2008) On the early history of urban ecology in Europe. In: Marzluff J, Shulenberger E, Endlicher W et al (eds) Urban ecology. An international perspective on the interaction between humans and nature. Springer Science + Business Media, New York, pp 79–97Google Scholar
  73. Suppo C, Robinet C, Perdereau E, Andrieu D, Bagnères AG (2017) Potential spread of the invasive North American termite, Reticulitermes flavipes, and the impact of climate warming. Biol Invasions :1–18.  https://doi.org/10.1007/s10530-017-1581-3
  74. Thorne BL, Traniello JFA, Adams ES, Bulmer M (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169CrossRefGoogle Scholar
  75. Vargo EL (2000) Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol Ecol 9:817–820CrossRefPubMedGoogle Scholar
  76. Vargo EL (2003) Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution 57:2805–2818CrossRefPubMedGoogle Scholar
  77. Vargo EL, Carlson JR (2006) Comparative study of breeding systems of sympatric subterranean termites (Reticulitermes flavipes and R. hageni) in central North Carolina using two classes of molecular genetic markers. Environ Entomol 35:173–187CrossRefGoogle Scholar
  78. Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403CrossRefPubMedGoogle Scholar
  79. Vargo EL, Husseneder C, Grace JK (2003) Colony and population genetic structure of the formosan subterranean termite, Coptotermes formosanus, in Japan. Mol Ecol 12:2599–2608CrossRefPubMedGoogle Scholar
  80. Vargo EL, Leniaud L, Swoboda LE et al (2013) Clinal variation in colony breeding structure and level of inbreeding in the subterranean termites Reticulitermes flavipes and R. grassei. Mol Ecol 22:1447–1462CrossRefPubMedGoogle Scholar
  81. Vieau F (1993) Le termite de Saintonge Reticulitermes santonensis Feytaud: Termite urbain. Bull Société Zool Fr 118:125–133Google Scholar
  82. Vieau F (2001) Comparison of the spatial distribution and reproductive cycle of Reticulitermes santonensis Feytaud and Reticulitermes lucifugus grassei Clément (Isoptera, Rhinotermitidae) suggests that they represent introduced and native species, respectively. Insect Soc 48:57–62CrossRefGoogle Scholar
  83. Vitousek P, Mooney H, Lubchenko J, Melillo J (1997) Human domination of earth’s ecosystems. Science 277(80):494–499CrossRefGoogle Scholar
  84. Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics : Martes americana in northern Idaho. Landsc Ecol 25:1601–1612CrossRefGoogle Scholar
  85. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  86. Wilkinson GN, Rogers CE (1973) Symbolic descriptions of factorial models for analysis of variance. Appl Stat 22:392–399CrossRefGoogle Scholar
  87. Williams NSG, Hahs AK, Vesk PA (2015) Urbanisation, plant traits and the composition of urban floras. Perspect Plant Ecol Evol Syst 17:78–86CrossRefGoogle Scholar
  88. Wright S (1969) Evolution and the genetics of populations, vol 2. The theory of gene frequencies. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS - Université de ToursToursFrance
  2. 2.Ecologie et Biologie des Interactions, UMR 7267, CNRS - Université de PoitiersPoitiersFrance
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS - Universités de MontpellierMontpellierFrance

Personalised recommendations