Advertisement

Urban Ecosystems

, Volume 21, Issue 4, pp 645–655 | Cite as

Urban park area and age determine the richness of native and exotic plants in parks of a Latin American city: Santiago as a case study

  • Javier A. FigueroaEmail author
  • Sergio A. CastroEmail author
  • Margarita Reyes
  • Sebastián Teillier
Article

Abstract

Plant diversity and composition in urban parks is determined by socio-economics, environmental, and ecological drivers. These drivers give rise to urban spaces with unique compositions of flora, consisting of planted and spontaneous species. The present study aimed to determine the contribution of native and exotic species in urban parks of a Latin American city, and to assess the related role of park area, age and socio-economic status. We also evaluated administration type (public or private) and the effect of environmental factors on plant richness. We hypothesized that the composition of park vegetation differs according to urban-rural gradient. To determine flora composition, two transects (100 m long by 1–3 m wide) per park were selected in 49 parks. In each of these, we identified all the vascular plants found (woody and herbs, planted and spontaneous), which were then classified as native or exotic. We conducted ANCOVAs in order to determine the effect of five independent variables and one factor, on native and exotic plant richness. Of 550 recorded species, 16.2% were native and 83.8% exotic. Number of plant species per park varied between 42 and 146. The parks are known urban habitats containing the highest planted and spontaneously occurring exotic diversity in the city of Santiago, contrasting with other types of habitats. Likewise, parks in Santiago are habitats with low levels of planted and spontaneously occurring native diversity, compared to the parks of Europe, America North and Asia. Ours results show that park area and age affected native plant richness, while exotic plant richness was determined only by park age. We rejected all other possible drivers. Finally, according to the low frequency of native species, we propose that Santiago’s parks could be gradually reoriented towards ex-situ conservation of native plants.

Keywords

Urban flora Introduced plants City parks Green spaces Ex-situ conservation 

Notes

Acknowledgements

This study was funded by an intern project of the Universidad Central de Chile. We thank park managers who facilitated us to collect plants. SA Castro gratefully acknowledges the support of the Center for the Development of Nanoscience and Nanotechnology, CEDENNA FB0807 – Line 6, DICYT 021543CM, and USA 1498.04. In addition, we thank JF Hernández who revised the manuscript translation and J Macaya for help with species determination.

References

  1. Abendroth S, Kowarik I, Muller N, von der Lippe M (2012) The green colonial heritage: Woody plants in park of Bandung, Indonesia. Landsc Urban Plan 106:12–22CrossRefGoogle Scholar
  2. Alvarado A, Bandini A, Guajardo F (2013) Árboles urbanos de Chile. Guía de reconocimiento. 2d. edn. Corporación Nacional Forestal. Santiago de ChileGoogle Scholar
  3. Ames S, Pischke K, Schoenfuss N, Snobl Z, Weiher E, Wellnitz T (2012) Biogeography patterns of lichens and tree on island of Boundary Waters Canoe Area Wilderness. Bios 83:145–154CrossRefGoogle Scholar
  4. Bae J, Ryu Y (2015) Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc Urban Plan 136:57–67CrossRefGoogle Scholar
  5. Bedimo-Rung AL, Mowen AJ, Cohen DA (2005) The significance of parks to physical activity and public health: A conceptual model. Am J Prev Med 28:159–168CrossRefPubMedGoogle Scholar
  6. Bonthoux S, Brun M, di Pietro F, Greulich S, Bouché-Pillon S (2014) How can wastelands promote biodiversity in cities? A review. Landsc Urban Plan 132:79–88CrossRefGoogle Scholar
  7. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc Urban Plan 97:147–155CrossRefGoogle Scholar
  8. Bryant MM (2006) Urban landscape conservation and the role of ecological greenways at local and metropolitan scales. Landsc Urban Plan 76:23–44CrossRefGoogle Scholar
  9. Castro SA, Figueroa JA, Muñoz-Schick M, Jaksic FM (2005) Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers Distrib 11:183–191CrossRefGoogle Scholar
  10. Ceballos W (1997) Enverdecimiento urbano en Chile. In: Krishnamurthy L, Rente Nascimento J (eds) Área verdes urbanas en Latinoamérica y el Caribe. Banco Interamericano de Desarrollo, Ciudad de México, pp 231–251Google Scholar
  11. Collins CC (1997) Oscar Prager, jardines en el paisaje. ARQ 37:62–68Google Scholar
  12. Cornelis J, Hermy M (2004) Biodiversity relationship in urban and suburban parks in Flanders. Landsc Urban Plan 69:385–401CrossRefGoogle Scholar
  13. de Mattos C (2003) Globalización y transformación metropolitana en el caso de Santiago. In: Hidalgo R, Arenas F, Coll JL (eds) Los nuevos modos de gestión de la metropolización. Serie Geolibros. Instituto de Geografía. P. Universidad Católica de Chile, Santiago de Chile, pp 27–55Google Scholar
  14. Figueroa JA, Teillier S, Castro SA (2011) Diversity patterns and composition of native and exotic floras in central Chile. Acta Oecol 37:103–109CrossRefGoogle Scholar
  15. Figueroa JA, Teillier S, Carvallo G, Castro SA (2013) Especies de plantas exóticas en los campos agrícolas y en los sitios perturbados en Chile Central. In: Reveco O (ed) Más allá de lo dicho: hallazgos desde la investigación. RIL Editores, Santiago de Chile, pp 369–384Google Scholar
  16. Figueroa JA, Teillier S, Guerrero N, Ray C, Rivano S, Saavedra D, Castro SA (2016) Vascular flora in public space of Santiago, Chile. Gayana Bot 73:85–103CrossRefGoogle Scholar
  17. Fischer LK, Rodorff V, von der Lippe M, Kowarik I (2016) Drivers of biodiversity patterns in parks of a growing South American megacity. Urban Ecosyst 19:1231–1249CrossRefGoogle Scholar
  18. Friedley JD, Brown RL, Bruno JE (2004) Null models of exotic invasion and scale-dependent patterns of native and exotic species richness. Ecology 86:1848–1855Google Scholar
  19. Gaertner M, Breeyen AD, Hui C, Richardson M (2009) Impacts of alien plants invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog Phys Geogr 33:319–338CrossRefGoogle Scholar
  20. García A (1989) El parquet urbano como espacio multifunctional: origen, evolución y principales funciones. Paralelo 37:105–111Google Scholar
  21. Garcia E (1997) Composicion floristica y ecologica de las comunidades ruderales de las calles de la ciudad de La Paz. Ecología en Bolivia 29:1–75Google Scholar
  22. Gärtner E, Rojas G, Castro SA (2015) Compositional patterns of ruderal herbs in Santiago, Chile. Gayana Bot 72:192–202CrossRefGoogle Scholar
  23. Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98CrossRefPubMedGoogle Scholar
  24. GOOGLE EARTH PRO (Version 2016) (2016) Copyright Google. https://support.google.com/earth/. Accessed 1 Dec 2016
  25. Guerrero-Leiva N, Castro SA, Rubio MA, Ortiz-Calderón C (2016) Retention of atmospheric particulates by three woody ornamental species in Santiago, Chile. Air Soil Poll 227:435CrossRefGoogle Scholar
  26. Gustafson EJ, Gardner RH (1996) The effect of landscape heterogeneity on the probability of patch colonization. Ecology 77:94–107CrossRefGoogle Scholar
  27. Hoffmann A (1998) El árbol urbano en Chile, 3rd edn. Fundación Claudio Gay, Santiago de ChileGoogle Scholar
  28. Ignatieva ME (2011) Plant material for urban landscapes in the era of globalization: roots, challenges and innovative solutions. In: Richte M, Weiland U (eds) Applied urban ecology: a global framework. John Wiley & Sons, Chichester, pp 139–151CrossRefGoogle Scholar
  29. INE (2005) Chile: ciudades, pueblos, aldeas y caseríos. Instituto Nacional de Estadística. Dirección Nacional, Santiago de ChileGoogle Scholar
  30. Kotzen B (2003) An investigation of shade under six different tree species of the Negev desert towards theirs potential use for enhancing micro-climatic condition in landscape architectural development. J Arid Environ 2:231–274CrossRefGoogle Scholar
  31. Li W, Ouyang Z, Meng X, Wang X (2006) Plant species composition in relation to green cover configuration and function of urban parks in Beijing, China. Ecol Res 21:221–237CrossRefGoogle Scholar
  32. Lososová Z, Horsák M, Chytrý M, Čejka T, Danihelka J, Fajmon K, Hájek O, Juřičková L, Kintrová K, Lániková D, Otýková Z, Řehořek V, Tichý L (2011a) Diversity of Central European urban biota: effect of human-made habitat types on plants and snails. J Biogeogr 38:1152–1163CrossRefGoogle Scholar
  33. Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K, Hájek O, Kintrová K, Kühn I, Láníková D, Otýpková Z, Řehořek V (2011b) Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Glob Ecol Biogeogr 21:545–555CrossRefGoogle Scholar
  34. Luck GW, Smallbone LT, O’Brien R (2009) Socio-economics and vegetation change in urban ecosystems: patterns in space and time. Ecosystems 12:604–620CrossRefGoogle Scholar
  35. Magura T, Lövei GL, Tóthmérész B (2010) Does urbanization decrease diversity in ground beetle (Caarabidae) assemblages? Glob Ecol Biogeogr 19:16–26CrossRefGoogle Scholar
  36. Marticorena C, Quezada M (1985) Catálogo de la flora vascular de Chile. Gayana Botánica 42:1–157Google Scholar
  37. Martín-Forés I, Castro I, Acosta-Gallo B, del Pozo A, Sanchez-Jardon L, de Miguel JM, Ovalle C, Casado MA (2016) Alien plant species coexist over time with native ones in Chilean Mediterranean grasslands. J Plant Ecol.  https://doi.org/10.1093/jpe/rtw043
  38. Mason CF (2000) Thruhes now largely restricted to the built environment in Eastern England. Diver Distrib 6:189–194CrossRefGoogle Scholar
  39. Matthei O (1995) Manual de malezas que crecen en Chile. Alfabeta Impresores, Santiago de ChileGoogle Scholar
  40. McKinney M (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  41. McPhee J, Cortés G, Rojas M, García L, Descalzi A, Vargas L (2014) Downscaling Climate Changes for Santiago: What Effects can be Expected? In: Krellenberg K, Hansjürgens B (eds) Climate Adaptation Santiago. Springer-Verlag, Berlin Heidelberg, pp 19–41CrossRefGoogle Scholar
  42. Méndez E (2005) Flora y vegetación del centro urbano de Luján de Cuyo. Mendoza (Argentina). Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 37:67–74Google Scholar
  43. Moro MF, Farias-Castro AS (2015) A check list of plant species in the urban forestry of Fortaleza, Brazil: where are the native species in the country of megadiversity? Urban Ecosyst 18:47–71CrossRefGoogle Scholar
  44. Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177CrossRefPubMedGoogle Scholar
  45. Muratet A, Pellegrini P, Dufour AB, Arrif T (2015) Perception and knowledge of plant diversity among urban park users. Landsc. Urban Plan 137:95–106CrossRefGoogle Scholar
  46. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  47. Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327CrossRefGoogle Scholar
  48. Nowak DJ, Hirabayashi S, Bodine A, Greenfield E (2014) Tree and forest effects on air quality and human health in the United States. Environ Pollut 193:119–129CrossRefPubMedGoogle Scholar
  49. Oliveira S, Andrade H, Vaz T (2011) The cooling effect of green space as a contribution to the mitigation of urban heat: A case study in Lisbon. Build Environ 46:2186–2194CrossRefGoogle Scholar
  50. Philippi RA (1882) Catálogo de las plantas cultivadas para el Jardín Botánico de Santiago hasta el 1 de mayo de 1881. Anales de la Universidad de Chile 59:519–581Google Scholar
  51. PNUD (2003) Las trayectorias del desarrollo humano en las comunas de Chile (1994–2003). Temas de Desarrollo Humano Sustentable N° 11. PNUD ChileGoogle Scholar
  52. Pyšek P, Jarošík V, Pergl J, Randall R, Chytrý M, Kühn I, Tichý L, Danihelka J, Chrtek J, Sádlo J (2009) The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diver Distrib 15:891–903CrossRefGoogle Scholar
  53. Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trends Ecol Evol 27:179–188CrossRefPubMedGoogle Scholar
  54. Rapoport EH, López-Moreno I (1987) Aportes a la Ecología Urbana de la Ciudad de México. Limusa, Ciudad de MéxicoGoogle Scholar
  55. Romero H, Vásquez A (2005) Evaluación ambiental del proceso de urbanización de las cuencas del piedemonte andino de Santiago de Chile. Eur Secur 94:97–118Google Scholar
  56. Romero H, Molina M, Moscoso C, Sarricolea P, Smith P, Vásquez A (2007) Caracterización de los cambios de usos y coberturas de suelo causados por la expansión urbana de Santiago, análisis de sus factores explicativos e inferencias ambientales. In: de Mattos C, Hidalgo R (eds) Santiago de Chile: Movilidad espacial y Reconfiguración Metropolitana. Ediciones Pontificia Universidad Católica de Chile, Santiago de Chile, pp 251–270Google Scholar
  57. Rosenzweig R, Blackmar E (1992) The park and the people. A history of Central Park. Cornell University Press, IthacaGoogle Scholar
  58. Rossetti F (2009) Arquitectura del paisaje en Chile. Ocho Libros Editores, Santiago de ChileGoogle Scholar
  59. Sarah P, Zhevelev HM, Oz A (2015) Urban park soil and vegetation. Effects of natural and anthropogenic factors Pedosphere 25:392–404Google Scholar
  60. Säumel I, Kowarik I, Butenschön S (2010) Green traces from past to future: the interplay of culture and ecological process in European historical parks. Acta Hortic 881:933–938CrossRefGoogle Scholar
  61. Schmitt JL, Goetz MNB (2010) Species richness of fern and lycophyte in an urban park in the Rio dos Sinos basin, Southern Brazil. Braz J Biol 70:1161–1167CrossRefPubMedGoogle Scholar
  62. Schwarz K, Fragkias M, Boone CG, Zhou W, McHale M, Morgan J, O’Neil-Dunne J, JP MF, Buckley GL, Childers D, Ogden L, Pincetl S, Pataki D, Whitmer A, Cadenasso ML (2015) Tree grow on money: urban tree canopy cover and environmental justice. PLoS One.  https://doi.org/10.1371/journal.pone.0122051
  63. Serra MT, Torres J, Grez I (2002) Breve historia de la introducción en Chile del álamo (Populus nigra L. var. italica (Moench.) Koehne) y el desarrollo de ejemplares siempreverdes. Chloris Chilensis 5 (2) http://www.chlorischile.cl. Accessed 1 Dec 2016
  64. Simmons BL, Hallett RA, Falxa N, Auyeung DSN, Lu JWT (2016) Long-term outcomes of forest restoration in an urban park. Restor Ecol 24:109–118CrossRefGoogle Scholar
  65. Smith RM, Thompson K, Hodgson JG, Warren PH, Gaston KJ (2006) Urban domestic gardens (IX): Composition and richness of the vascular plan flora, and implications for native biodiversity. Biol Conserv 129:312–322CrossRefGoogle Scholar
  66. Tam KC, Bonebrake TC (2016) Butterfly diversity, habitat and vegetation usage in Hong Kong urban parks. Urban Ecosyst 19:721–733CrossRefGoogle Scholar
  67. Teillier S, Figueroa JA, Castro SA (2010) Especies exóticas de la vertiente occidental de la cordillera de la Costa, Provincia de Valparaíso, Chile central. Gayana Bot 67:27–43Google Scholar
  68. Turner K, Lefler L, Freedman B (2005) Plant communities of selected urbanized areas of Halifax, Nova Scotia, Canada. Landsc Urban Plan 71:191–206CrossRefGoogle Scholar
  69. Vallet J, Daniel H, Beaujouan V, Rozé F, Pavoine S (2010) Using biological traits to assess how urbanization filters plant species of small woodlands. Appl Veg Sci 13:42–424CrossRefGoogle Scholar
  70. Walker JS, Grimm NB, Briggs JM, Gries C, Dugan L (2009) Effects of urbanization on plant species diversity in central Arizona. Front Ecol Environ 7:465–470CrossRefGoogle Scholar
  71. XLSTAT Pro (Version 2015) (2015) Copyright Addinsoft. http://www.xlstat.com. Accessed 1 Dec 2016
  72. Zerbe S, Maurer U, Schmitz S, Sukopp H (2003) Biodiversity in Berlin and its potential for nature conservation. Landsc Urban Plan 62:139–148CrossRefGoogle Scholar
  73. Zuloaga F, Morrone O, Belgrano M (2009) Catálogo de las Plantas Vasculares del Cono Sur. Versión online. http://www.darwin.edu.ar/Proyectos/FloraArgentina/FA.asp. Accessed 1 Dec 2016

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Estudios Arquitectónicos, Urbanísticos y del Paisaje, Facultad de Arquitectura, Urbanismo y PaisajeUniversidad Central de ChileSantiagoChile
  2. 2.Laboratorio de Ecología y Biodiversidad Vegetal, Departamento de BiologíaUniversidad de Santiago de ChileSantiagoChile
  3. 3.Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNASantiagoChile
  4. 4.Escuela de Arquitectura del PaisajeUniversidad Central de ChileSantiagoChile

Personalised recommendations