Urban Ecosystems

, Volume 21, Issue 1, pp 85–95 | Cite as

Spatial variability of fish communities in a highly urbanised reef system

  • Daisuke Taira
  • Rosa Celia Poquita-Du
  • Tai Chong Toh
  • Kok Ben Toh
  • Chin Soon Lionel Ng
  • Lutfi Afiq-Rosli
  • Loke Ming Chou
  • Tiancheng Song


Rapid coastal development has generated interest in the ecology of human-modified marine environments. Coastal defence structures such as breakwaters and seawalls are increasingly built to reduce erosion and to mitigate the impacts of sea level rise but knowledge on the marine biodiversity around these structures is lacking. Benthic cover and fish community were surveyed at nine offshore sites, comprising seven coral reefs and two seawalls, in the Singapore’s highly urbanised reef system. A total of 4943 fishes from 70 taxa were recorded, dominated by Pomacentridae (56.5%) and Labridae (17.7%). The results showed a clear spatial variation in the fish community structure across the reefs. The southwestern reefs supported fish communities that were significantly different from those in the south. Generic diversity was significantly higher at the southwestern reefs than the southern ones while the abundance and generic richness were similar. The differences in fish community structure were moderately correlated with the abundance of coralline algae, foliose and submassive corals. The seawall sites supported fish communities different from coral reefs that were adjacent to them. While abundance was similar, the former had higher generic richness and diversity than the latter. The difference in community was attributed to two pomacentrid genera (i.e. Neopomacentrus and Pomacentrus) which were more abundant at the reefs. The findings demonstrated that urbanised coastal ecosystems can contribute to supporting fish diversity.


Coastal modification Coral reef fishes Artificial shorelines Coral reefs Seawalls Singapore 



This work was supported by the Singapore Maritime Institute, and Maritime and Port Authority of Singapore under Grant nos. R-347-000-190-592 and R-347-000-215-490 respectively.

Supplementary material

11252_2017_691_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)


  1. Allen GR (2008) Conservation hotspots of biodiversity and endemism for indo-Pacific coral reef fishes. Aquat Conserv Mar Freshwat Ecosyst 18(5):541–556CrossRefGoogle Scholar
  2. Allen G, Steene R, Humann P, DeLoach N (2015) Reef fish: identification tropical Pacific. New World Publications, JacksonvilleGoogle Scholar
  3. Baum G, Januar HI, Ferse SCA, Kunzmann A (2015) Local and regional impacts of pollution on coral reefs along the thousand islands north of the megacity Jakarta, Indonesia. PLoS One 10(9):1–26. doi: 10.1371/journal.pone.0138271 CrossRefGoogle Scholar
  4. Bejarano I, Appeldoorn RS (2013) Seawater turbidity and fish communities on coral reefs of Puerto Rico. Mar Ecol Prog Ser 474(January 2013:217–226. doi: 10.3354/meps10051 CrossRefGoogle Scholar
  5. Bellwood DR, Fulton CJ (2008) Sediment-mediated suppression of herbivory on coral reefs: decreasing resilience to rising sea-levels and climate change? Limnol Oceanogr 53(6):2695–2701CrossRefGoogle Scholar
  6. Bilkovic DM, Roggero MM (2008) Effects of coastal development on nearshore estuarine nekton communities. Mar Ecol Prog Ser 358:27–39. doi: 10.3354/meps07279 CrossRefGoogle Scholar
  7. Boh S (2016) Construction of Tuas terminal enters phase 1 of development. The Straits Times. Accessed 10 Oct 2016
  8. Bozec YM, Doledec S, Kulbicki M (2005) An analysis of fish-habitat associations on disturbed coral reefs: chaetodontid fishes in New Caledonia. J Fish Biol 66:966–982CrossRefGoogle Scholar
  9. Bulleri F, Chapman MG (2010) The introduction of coastal infrastructure as a driver of change in marine environments. J Appl Ecol 47(1):26–35. doi: 10.1111/j.1365-2664.2009.01751.x CrossRefGoogle Scholar
  10. Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resource Institute, Washington DC, p 114Google Scholar
  11. Burt J, Bartholomew A, Usseglio P, Bauman A, Sale PF (2009) Are artificial reefs surrogates of natural habitats for corals and fish in Dubai, United Arab Emirates? Coral Reefs 28(3):663–675. doi: 10.1007/s00338-009-0500-1 CrossRefGoogle Scholar
  12. Burt J, Bartholomew A, Sale PF (2011) Benthic development on large-scale engineered reefs: a comparison of communities among breakwaters of different age and natural reefs. Ecol Eng 37(2):191–198. doi: 10.1016/j.ecoleng.2010.09.004 CrossRefGoogle Scholar
  13. Burt JA, Feary DA, Cavalcante G, Bauman AG, Usseglio P (2012) Urban breakwaters as reef fish habitat in the Persian Gulf. Mar Pollut Bull 72(2):342–350. doi: 10.1016/j.marpolbul.2012.10.019 CrossRefPubMedGoogle Scholar
  14. Casey JM, Choat JH, Connolly SR (2014) Coupled dynamics of territorial damselfishes and juvenile corals on the reef crest. Coral Reefs 34(1):1–11. doi: 10.1007/s00338-014-1221-7 CrossRefGoogle Scholar
  15. Cenci E, Pizzolon M, Chimento N, Mazzoldi C (2011) The influence of a new artificial structure on fish assemblages of adjacent hard substrata. Estuar Coast Shelf Sci 91(1):133–149CrossRefGoogle Scholar
  16. Chapman MG, Underwood AJ (2011) Evaluation of ecological engineering of “armoured” shorelines to improve their value as habitat. J Exp Mar Biol Ecol 400(1):302–313CrossRefGoogle Scholar
  17. Chen D (2008) The effects of pontoons construction on the fish community in Sentosa Cove. Unpublished Thesis. National University of Singapore, Singapore, p 25Google Scholar
  18. Chin A, Sweatman H, Forbes S, Perks H, Walker R, Jones G, Williamson D, Evans R, Hartley F, Armstrong S, Malcolm H (2008) 2008 status of the coral reefs in Australia and Papua New Guinea. Global Coral Reef Monitoring NetworkGoogle Scholar
  19. Chou LM (2008) Nature and sustainability of the marine environment. In: Wong TC, Yuen B, Goldblum C (eds) Spatial planning for a sustainable Singapore. Springer Science+Business Media, Philadelphia, pp 169–182CrossRefGoogle Scholar
  20. Clark KR, Gorley RN (2006) PRIMER v6: user manual. Plymouth Marine Laboratory, Plymouth, p 192Google Scholar
  21. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, PlymouthGoogle Scholar
  22. Clynick BG (2006) Assemblages of fish associated with coastal marinas in north-western Italy. J Mar Biol Assoc UK 86(04):847–852. doi: 10.1017/S0025315406013786 CrossRefGoogle Scholar
  23. Coker DJ, Wilson SK, Pratchett MS (2014) Importance of live coral habitat for reef fishes. Rev Fish Biol Fish 24(1):89–126. doi: 10.1007/s11160-013-9319-5 CrossRefGoogle Scholar
  24. Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9(3):286–307CrossRefGoogle Scholar
  25. Coppard SE, Campbell AC (2004) Organisms associated with diadematid echinoids in Fiji. In: Echinoderms: Munchen: Proceedings of the 11th international echinoderm conference; Munich Germany 6-10 October 2003, Munich, p. 171Google Scholar
  26. De Robertis A, Ryer CH, Veloza A, Brodeur RD (2003) Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can J Fish Aquat Sci 60(12):1517–1526CrossRefGoogle Scholar
  27. Dikou A, van Woesik R (2006) Survival under chronic stress from sediment load: spatial patterns of hard coral communities in the southern islands of Singapore. Mar Pollut Bull 52(11):1340–1354. doi: 10.1016/j.marpolbul.2006.02.011/f03-123 CrossRefPubMedGoogle Scholar
  28. English S, Wilkinson C, Baker V (1994) SurveyManual for Tropical Marine Resources. ASEAN-Australia Marine Science Project: Living Coastal Resources. Australian Institute of Marine Science, Townsville, Australia. p 368Google Scholar
  29. Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64(9):1737–1765. doi: 10.1016/j.marpolbul.2012.05.008 CrossRefPubMedGoogle Scholar
  30. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50(2):125–146. doi: 10.1016/j.marpolbul.2004.11.028 CrossRefPubMedGoogle Scholar
  31. Feary DA, Burt JA, Bartholomew A (2011) Artificial marine habitats in the Arabian gulf: review of current use, benefits and management implications. Ocean Coast Manag 54(10):742–749CrossRefGoogle Scholar
  32. Floeter SR, Krohling W, Gasparini JL, Ferreira CEL, Zalmon IR (2007) Reef fish community structure on coastal islands of the southeastern Brazil: the influence of exposure and benthic cover. Environ Biol Fish 78(2):147–160. doi: 10.1007/s10641-006-9084-6 CrossRefGoogle Scholar
  33. Friedlander AM, Brown EK, Jokiel PL, Smith WR, Rodgers KS (2003) Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs 22:291–305CrossRefGoogle Scholar
  34. Gittman RK, Peterson CH, Currin CA, Joel Fodrie F, Piehler MF, Bruno JF (2016a) Living shorelines can enhance the nursery role of threatened estuarine habitats. Ecol Appl 26(1):249–263. doi: 10.1890/14-0716.1/suppinfo CrossRefPubMedGoogle Scholar
  35. Gittman RK, Scyphers SB, Smith CS, Neylan IP, Grabowski JH (2016b) Ecological consequences of shoreline hardening: a meta-analysis. BioScience biw091. doi: 10.1093/biosci/biw091
  36. Graham NA, Chabanet P, Evans RD, Jennings S, Letourneur Y, MacNeil MA, McClanahan TR, Öhman MC, Polunin NV, Wilson SK (2011) Extinction vulnerability of coral reef fishes. Ecol Lett 14(4):341–348CrossRefPubMedPubMedCentralGoogle Scholar
  37. Green AL, Bellwood DR (2009) Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience: a practical guide for coral reef managers in the Asia Pacific region (no. 7). IUCNGoogle Scholar
  38. Green DS, Chapman MG, Blockley DJ (2012) Ecological consequences of the type of rock used in the construction of artificial boulder-fields. Ecol Eng 46:1–10CrossRefGoogle Scholar
  39. Guest JR, Tun K, Low J, Vergés A, Marzinelli EM, Campbell AH, Bauman AG, Feary DA, Chou LM, Steinberg PD (2016a) 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Scientific reports 6Google Scholar
  40. Guest JR, Vergés A, Bauman AG, Campbell AH, Chou LM, Feary DA, Low JK, Marzinelli EM, Tun K, Steinberg PD (2016b) Examining the relationship between fish herbivore biomass, coral and macroalgal cover on Singapore’s heavily disturbed reefs. PeerJ Preprints 4:e1907v2Google Scholar
  41. Hajisamae S, Chou LM, Ibrahim S (2003) Feeding habits and trophic organization of the fish community in shallow waters of an impacted tropical habitat. Estuar Coast Shelf Sci 58(1):89–98. doi: 10.1016/S0272-7714(03)00062-3 CrossRefGoogle Scholar
  42. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change human impacts and the resilience of coral reefs. Science 301:929–933CrossRefPubMedGoogle Scholar
  43. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17(4):360–365CrossRefPubMedGoogle Scholar
  44. Jaafar Z, Hajisamae S, Chou LM, Yatiman Y (2004) Community structure of coastal fishes in relation to heavily impacted human modified habitats. Hydrobiologia 511:113–123CrossRefGoogle Scholar
  45. Jones GP (1990) The importance of recruitment to the dynamics of a coral reef fish population. Ecology 71(5):1691–1698CrossRefGoogle Scholar
  46. Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci 101(21):8251–8253. doi: 10.1073/pnas.0401277101 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kohler KE, Gill SM (2006) Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32(9):1259–1269CrossRefGoogle Scholar
  48. Komyakova V, Munday PL, Jones GP (2013) Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS One 8(12):e83178CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lai S, Loke LHL, Hilton MJ, Bouma TJ, Todd PA (2015) The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean Coast Manag 103:78–85. doi: 10.1016/j.ocecoaman.2014.11.006 CrossRefGoogle Scholar
  50. Lewis AR (1997) Recruitment and post-recruit immigration affect the local population size of coral reef fishes. Coral Reefs 16:139–149CrossRefGoogle Scholar
  51. Lim GSY, Chou LM (1991) The fish fauna around proposed reef sites in Singapore. In: towards an integrated management of tropical coastal resources. ICLARM conference proceedings 22. National University of Singapore and National Science and technology board and International Center for Living Aquatic Resources Management, Singapore, Philippines, pp 333–336Google Scholar
  52. Loke LH, Todd PA (2016) Structural complexity and component type increase intertidal biodiversity independently of area. Ecology 97(2):383–393CrossRefPubMedGoogle Scholar
  53. Loke LH, Liao LM, Bouma TJ, Todd PA (2016) Succession of seawall algal communities on artificial substrates. Raffles Bull Zool 2016(32):1–10Google Scholar
  54. Low JKY (2013) More noteworthy fishes observed in the Singapore Straits. Nature in Singapore 6:31–37Google Scholar
  55. Low JKY, Chou LM (1992) Distribution of coral reef fish in Singapore. In: Third ASEAN Science & Technology Week Conference Proceedings, Vol. 6, Marine Science: Living Coastal Resources. National University of Singapore and National Science and Technology Board. Singapore. pp. 139–144Google Scholar
  56. Low JK, Leng CB, Chou LM (1997) Pomacentrid population dynamics on Singapore coral reefs. Environ Monit Assess 44(1–3):53–66CrossRefGoogle Scholar
  57. Low JKY, Tanzil JIT, Jaafar Z (2009) Some note-worthy fishes observed in the Singapore Straits. Nature in Singapore 2:77–82Google Scholar
  58. Madduppa HH, Ferse SCA, Aktani U, Palm HW (2012) Seasonal trends and fish-habitat associations around Pari Island, Indonesia: setting a baseline for environmental monitoring. Environ Biol Fish 95(3):383–398. doi: 10.1007/s10641-012-0012-7 CrossRefGoogle Scholar
  59. Martins GM, Jenkins SR, Neto AI, Hawkins SJ, Thompson RC (2016) Long-term modifications of coastal defences enhance marine biodiversity. Environ Conserv 43(2):109–116CrossRefGoogle Scholar
  60. Mayer-Pinto M, Johnston EL, Hutchings PA, Marzinelli EM, Ahyong ST, Birch G, Booth DJ, Creese RG, Doblin MA, Figueira W, Gribben PE, Pritchard T, Roughan M, Steinberg PD, Hedge LH (2015) Sydney harbour: a review of anthropogenic impacts on the biodiversity and ecosystem function of one of the world’s largest natural harbours. Mar Freshw Res 66(12):1088–1105. doi: 10.1071/MF15157 CrossRefGoogle Scholar
  61. Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Chang Biol 10(10):1642–1647CrossRefGoogle Scholar
  62. Mussi M, McFarland WN, Domenici P (2005) Visual cues eliciting the feeding reaction of a planktivorous fish swimming in a current. J Exp Biol 208(5):831–842CrossRefPubMedGoogle Scholar
  63. Negri AP, Smith LD, Webster NS, Heyward AJ (2002) Understanding ship-grounding impacts on a coral reef: potential effects of anti-foulant paint contamination on coral recruitment. Mar Pollut Bull 44(2):111–117. doi: 10.1016/S0025-326X(01)00128-X CrossRefPubMedGoogle Scholar
  64. Ng HH, Lim KKP (2014) A preliminary checklist of the cardinalfishes (Actinopterygii: Gobiiformes: Apogonidae) of Singapore. Check List 10(5):1061–1070. doi: 10.15560/10.5.6643 CrossRefGoogle Scholar
  65. Ng CSL, Lim SC, Ong JY, Teo LM, Chou LM, Chua KE, Tan KS (2015a) Enhancing the biodiversity of coastal defence structures: transplantation of nursery-reared reef biota onto intertidal seawalls. Ecol Eng 30(82):480–486CrossRefGoogle Scholar
  66. Ng CSL, Toh TC, Toh KB, Tun K, Chou LM (2015b) High density aggregations of cucumariids (Echinodermata: Holothuroidea) on a Singapore sedimented reef. Mar Biodivers 45(1):5–6. doi: 10.1007/s12526-014-0228-1 CrossRefGoogle Scholar
  67. Ng CSL, Toh TC, Chou LM (2016) Coral restoration in Singapore’s sediment-challenged sea. Regional Studies in Marine Science 8:422–429CrossRefGoogle Scholar
  68. Peters JR, Yeager LA, Layman CA (2015) Comparison of fish assemblages in restored and natural mangrove habitats along an urban shoreline. Bull Mar Sci 91(2):125–139. doi: 10.5343/bms.2014.1063 CrossRefGoogle Scholar
  69. Pratchett MS, Wilson SK, Baird AH (2006) Declines in the abundance of Chaetodon butterflyfishes following extensive coral depletion. J Fish Biol 69(5):1269–1280. doi: 10.1111/j.1095-8649.2006.01161.x CrossRefGoogle Scholar
  70. Pratchett MS, Coker DJ, Jones GP, Munday PL (2012) Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol Evol 2(9):2168–2180. doi: 10.1002/ece3.321 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Riegl B (2001) Degradation of reef structure, coral and fish communities in the Red Sea by ship groundings and dynamite fisheries. Bull Mar Sci 69(2):595–611Google Scholar
  72. Roberts CM, Ormond RF (1987) Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar Ecol Prog Ser 41:1–8CrossRefGoogle Scholar
  73. Sale PF (2004) Connectivity, recruitment variation, and the structure of reef fish communities. Integr Comp Biol 44(5):390–399CrossRefPubMedGoogle Scholar
  74. Sale PF, Feary DA, Burt JA, Bauman AG, Cavalcante GH, Drouillard KG, Kjerfve B, Marquis E, Trick CG, Usseglio P, Van Lavieren H (2011) The growing need for sustainable ecological management of marine communities of the Persian Gulf. Ambio 40(1):4–17CrossRefPubMedGoogle Scholar
  75. Songploy S, Hemachandra W, Chavanich S, Viyakarn V (2013) Fish assemblages in coral communities at Chao Lao Beach, Chanthaburi Province, Thailand. Galaxea Journal of Coral Reef Studies 15(supplement):189–194CrossRefGoogle Scholar
  76. Tan HH, Low MEY, Lim KKP (2010) Fishes of the Marina basin, Singapore, before the erection of the Marina barrage. Raffles Bull Zool 58(1):137–144Google Scholar
  77. Tan YZ, Ng CS, Chou LM (2012) Natural colonisation of a marina seawall by scleractinian corals along Singapore’s east coast. Nature in Singapore 5:177–183Google Scholar
  78. Toh KB, Ng CSL, Leong WKG, Jaafar Z, Chou LM (2016) Assemblages and diversity of fishes in Singapore’s marinas. Raffles Bull Zool 2016(32):85–94Google Scholar
  79. Toh TC, Ng CS, Loke HX, Taira D, Toh KB, Afiq-Rosli L, Du RC, Cabaitan P, Sam SQ, Kikuzawa YP, Chou LM (2017) A cost-effective approach to enhance scleractinian diversity on artificial shorelines. Ecol Eng 99:349–357CrossRefGoogle Scholar
  80. Tun KPP (2012) Optimsation of reef survey methods and application of reef metrics and biocriteria for the monitoring of sediment-impacted reefs (Ph.D. thesis), Department of Biological Sciences, National University of Singapore, p. 208Google Scholar
  81. Weis JS, Weis P (2005) Use of intertidal mangrove and sea wall habitats by coral reef fishes in the Wakatobi Marine Park, Indonesia. Raffles Bulletin of Zoology 53(1): 119–124.Google Scholar
  82. Wen CKC, Chen KS, Hsieh HJ, Hsu CM, Chen CA (2013) High coral cover and subsequent high fish richness on mature breakwaters in Taiwan. Mar Pollut Bull 72(1):55–63. doi: 10.1016/j.marpolbul.2013.04.031
  83. Wenger AS, Johansen JL, Jones GP (2012) Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. J Exp Mar Biol Ecol 428:43–48. doi: 10.1016/j.jembe.2012.06.004 CrossRefGoogle Scholar
  84. Wenger AS, McCormick MI, McLeod IM, Jones GP (2013) Suspended sediment alters predator-prey interactions between two coral reef fishes. Coral Reefs 32(2):369–374. doi: 10.1007/s00338-012-0991-z CrossRefGoogle Scholar
  85. Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36(2):370–390. doi: 10.1016/j.ympev.2005.02.001 CrossRefPubMedGoogle Scholar
  86. Whitfield AK, Becker A (2014) Impacts of recreational motorboats on fishes: a review. Mar Pollut Bull 83(1):24–31. doi: 10.1016/j.marpolbul.2014.03.055 CrossRefPubMedGoogle Scholar
  87. Yeung YM (2001) Coastal mega-cities in Asia: transformation, sustainability and management. Ocean Coast Manag 44(5):319–333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
  2. 2.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  3. 3.Maritime and Port Authority of SingaporeSingaporeSingapore

Personalised recommendations