Advertisement

Urban Ecosystems

, Volume 20, Issue 5, pp 1001–1009 | Cite as

Urbanization impacts the taxonomic and functional structure of aquatic macroinvertebrate communities in a small Neotropical city

  • Stanislas Talaga
  • Olivier Dézerald
  • Alexis Carteron
  • Céline Leroy
  • Jean-François Carrias
  • Régis Céréghino
  • Alain Dejean
Article

Abstract

Due to habitat fragmentation, resource disruption and pollution, urbanization is one of the most destructive forms of anthropization affecting ecosystems worldwide. Generally, human-mediated perturbations dramatically alter species diversity in urban sites compared to the surroundings, thus influencing the functioning of the entire ecosystem. We investigated the taxonomic and functional diversity patterns of the aquatic macroinvertebrate communities in tank bromeliads by comparing those found in a small Neotropical city with those from an adjacent rural site. Changes in the quality of detrital inputs in relation to lower tree diversity and the presence of synanthropic species are likely important driving forces behind the observed structural changes in the urban site. Leaf-litter processors (i.e., shredders, scrapers) were positively affected in the urban site, while filter-feeders that process smaller particles produced by the activity of the shredders were negatively affected. Because we cannot ascertain whether the decline in filter-feeders is related to food web-mediated effects or to competitive exclusion (Aedes aegypti mosquitoes were present in urban bromeliads only), further studies are necessary to account for the effects of intra-guild competition or inter-guild facilitation.

Keywords

Aedes aegypti Bioindicator Diversity Functional traits Tank bromeliads Urban ecology 

Notes

Acknowledgements

We are grateful to Andrea Yockey-Dejean for proofreading the manuscript, the Laboratoire Environnement de Petit Saut for furnishing logistical assistance, and the municipality of Sinnamary (through the Department of the Environment) for permitting us to work inside the city limits. This study has benefited from an Investissement d’Avenir grant managed by the Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-0025). ST and OD were funded by a PhD scholarship (Université Antilles-Guyane for ST; French Centre National de la Recherche Scientifique and the Fond Social Européen for OD).

Supplementary material

11252_2017_653_MOESM1_ESM.docx (45 kb)
Appendix S1 (DOCX 44 kb)

References

  1. Belkin JN, Heinemann SJ (1976) Collection records of the project "mosquitoes of middle America". 4. Leeward Islands: Anguilla (ANG), Antigua (ANT), Barbuda (BAB), Montserrat (MNT), Nevis (NVS), St. Kitts (KIT). Mosq Syst 8:123–162Google Scholar
  2. Brouard O, Céréghino R, Leroy C, Pelozuelo L, Dejean A, Corbara B, Carrias JF (2012) Understory environments influence functional diversity in tank-bromeliad ecosystems. Freshw Biol 57:815–823CrossRefGoogle Scholar
  3. Céréghino R, Leroy C, Carrias JF, Pelozuelo L, Ségura C, Bosc C, Dejean A, Corbara B (2011) Ant-plant mutualisms promote functional diversity in phytotelm communities. Funct Ecol 25:954–963CrossRefGoogle Scholar
  4. Chadee DD, Ward RA, Novak RJ (1998) Natural habitats of Aedes aegypti in the Caribbean–a review. J Am Mosquito Cont 14:5–11Google Scholar
  5. Chevenet F, Doleadec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309CrossRefGoogle Scholar
  6. Christophers S (1960) Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press, London, UKGoogle Scholar
  7. Delaney KS, Riley SP, Fisher RN (2010) A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS One 5:e12767CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dézerald O, Céréghino R, Corbara B, Dejean A, Leroy C (2015) Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshw Biol 60:1917–1929CrossRefGoogle Scholar
  9. Dézerald O, Leroy C, Corbara B, Carrias JF, Pelozuelo L, Dejean A, Céréghino R (2013) Food-web structure in relation to environmental gradients and predator-prey ratios in tank bromeliad ecosystems. PLoS One 8:e71735CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dézerald O, Leroy C, Corbara B, Dejean A, Talaga S, Céréghino R (2017) Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshw Biol 62:229–242CrossRefGoogle Scholar
  11. Dézerald O, Talaga S, Leroy C, Carrias JF, Corbara B, Dejean A, Céréghino R (2014) Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank bromeliads. Hydrobiologia 723:77–86CrossRefGoogle Scholar
  12. Géoportail (2016) Institut national de l’information géographique et forestière (IGN). URL:https://www.geoportail.gouv.fr/ Google Scholar
  13. Gerisch M, Agostinelli V, Henle K, Dziock F (2012) More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121:508–515CrossRefGoogle Scholar
  14. Grau HR, Hernández ME, Gutierrez J, Gasparri NI, Casavecchia MC, Flores EE, Paolini L (2008) A peri-urban neotropical forest transition and its consequences for environmental services. Ecol Soc 13:35CrossRefGoogle Scholar
  15. Hammill E, Atwood TB, Srivastava DS (2015) Predation threat alters composition and functioning of bromeliad ecosystems. Ecosystems 18:857–866CrossRefGoogle Scholar
  16. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  17. INSEE (2012) Institut national de la statistique et des études économiques. Open data http://www.insee.fr/
  18. Jocqué M, Kernahan A, Nobes A, Willians C, Field R (2010) How effective are non-destructive sampling methods to assess aquatic invertebrate diversity in bromeliads? Hydrobiologia 649:293–300CrossRefGoogle Scholar
  19. Jones EL, Leather SR (2013) Invertebrates in urban areas: a review. Eur J Entomol 109:463–478CrossRefGoogle Scholar
  20. Kitching RL (2000) Food webs and container habitats: the natural history and ecology of phytotelmata. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305CrossRefPubMedGoogle Scholar
  22. Lane J (1953) Neotropical Culicidae, vol I and II. Universidade de São Paulo, São Paulo, BrazilGoogle Scholar
  23. Leroy C, Corbara B, Dejean A, Céréghino R (2009) Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad. New Phytol 183:1124–1133CrossRefPubMedGoogle Scholar
  24. Maciel-de-Freitas R, Marques WA, Peres RC, Cunha SP, Lourenço-de-Oliveira R (2007) Variation in Aedes aegypti (Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons. Mem Inst Oswaldo Cruz 102:489–496CrossRefPubMedGoogle Scholar
  25. Marcon E, Scotti I, Hérault B, Rossi V, Lang G (2014) Generalization of the partitioning of Shannon diversity. PLoS One 9:e90289CrossRefPubMedPubMedCentralGoogle Scholar
  26. McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835CrossRefGoogle Scholar
  27. McKinney ML (2002) Urbanization, biodiversity, and conservation. The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 52:883–890CrossRefGoogle Scholar
  28. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  29. Merritt RW, Cummins KW (2008) An introduction to the aquatic insects of North America. Kendall Hunt Publishing Company, Dubuque, USAGoogle Scholar
  30. Morrill PK, Neal BR (1990) Impact of deltamethrin insecticide on Chironomidae (Diptera) of prairie ponds. Can J Zool 68:289–296CrossRefGoogle Scholar
  31. Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177CrossRefPubMedGoogle Scholar
  32. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sc 4:439–473CrossRefGoogle Scholar
  33. QGIS Development Team (2015) QGIS geographic information system. Open Source Geospatial Foundation Project, URL http://qgis.osgeo.org/ Google Scholar
  34. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL http://www.R-project.org/ Google Scholar
  35. Santoul F, Gaujard A, Angélibert S, Mastrorillo S, Céréghino R (2009) Gravel pits support waterbird diversity in an urban landscape. Hydrobiologia 634:107–114CrossRefGoogle Scholar
  36. Savard JPL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landsc Urban Plan 48:131–142CrossRefGoogle Scholar
  37. Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, Trzcinski MK (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384CrossRefPubMedGoogle Scholar
  38. Stein M, Juri MJD, Oria GI, Ramirez PG (2013) Aechmea distichantha (Bromeliaceae) epiphytes, potential new habitat for Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) collected in the province of Tucumán, northwestern Argentina. Fla Entomol 96:1202–1206CrossRefGoogle Scholar
  39. Talaga S, Delabie JHC, Dézerald O, Salas-Lopez A, Petitclerc F, Leroy C, Hérault B, Céréghino R, Dejean A (2015) A bromeliad species reveals invasive ant presence in urban areas of French Guiana. Ecol Indic 58:1–7CrossRefGoogle Scholar
  40. Talaga S (2016) Ecologie, diversité et évolution des moustiques (Diptera: Culicidae) de Guyane française : implications dans l’invasion biologique du moustique Aedes aegypti. PhD thesis, Université de Guyane, Faculté des Sciences Exactes et NaturellesGoogle Scholar
  41. Trzcinski M, Srivastava D, Corbara B, Dézerald O, Leroy C, Carrias JF, Dejean A, Céréghino R (2016) The effects of food-web structure on ecosystem function exceeds those of precipitation. J Anim Ecol 85:1147–1160CrossRefPubMedGoogle Scholar
  42. Tuomisto H (2012) An updated consumer’s guide to evenness and related indices. Oikos 121:1203–1218CrossRefGoogle Scholar
  43. Varejão JBM, Santos CBD, Rezende HR, Bevilacqua LC, Falqueto A (2005) Criadouros de Aedes (Stegomyia) aegypti (Linnaeus, 1762) em bromélias nativas na cidade de Vitória, ES. Rev Soc Bras Med Trop 38:238–240CrossRefPubMedGoogle Scholar
  44. Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301CrossRefPubMedGoogle Scholar
  45. Yanoviak SP (1999) Effects of leaf litter species on macroinvertebrate community properties and mosquito yield in Neotropical tree hole microcosms. Oecologia 120:147–155CrossRefPubMedGoogle Scholar
  46. Yee DA, Juliano SA (2006) Consequences of detritus type in an aquatic microsystem: effects on water quality, micro-organisms and performance of the dominant consumer. Freshw Biol 51:448–459CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institut Pasteur de la Guyane, Unité d’Entomologie MédicaleCayenne cedexFrance
  2. 2.CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de GuyaneKourouFrance
  3. 3.IRD, UMR AMAP, Cirad, CNRS, INRA, Université de Montpellier, Boulevard de la Lironde, TA A-51/PS2MontpellierFrance
  4. 4.Université Clermont Auvergne, CNRS, LMGEClermont-FerrandFrance
  5. 5.Ecolab, Université de Toulouse, CNRS, INPT, UPSToulouseFrance

Personalised recommendations