Urban Ecosystems

, Volume 20, Issue 4, pp 759–773 | Cite as

Habitat rehabilitation in urban waterways: the ecological potential of bank protection structures for benthic invertebrates

  • Arnd Weber
  • Xavier-François Garcia
  • Christian Wolter


Compensating for the adverse ecological impacts of waterway development and improving their ecological functioning to achieve good ecological potential (GEP) have become mandatory within the European Union (EU). The technical rehabilitation measures presented here aim to functionally minimize the hydraulic impacts of navigation on aquatic biota in highly urbanized waterways. Their ecological functioning and potential to enhance biodiversity locally was assessed by comparing their macro-invertebrate community composition with nearby non-restored sites. Rehabilitation led to lower hydraulic impact on the littoral zone, which in turn led to the presence of otherwise missing macrophytes and the occurrence of organic mud habitats colonized by invertebrates typically rare in urban waterways. While the control sites were dominated by few, mostly invasive taxa in vast numbers, the rehabilitated sites exhibited a highly diverse community with 22 protected mollusc and insect taxa typically found in the oxbow communities of natural rivers. This major improvement was however not detected using the core metrics of the legally required national assessment tools of the EU Water Framework Directive. Overall results proved the success of this type of rehabilitation measure with respect to improving biodiversity, but they also showed the limiting and key factors influencing the macro-invertebrate communities of highly deteriorated urban waterways. Indeed, future implementations of this type of rehabilitation measure should consider spatial extent, water exchange rates, temporal succession of vegetation and adaptive management to improve its ecological functioning.


Artificial shallow zones Inland navigation Hydrodynamics Biodiversity Native vs non-native taxa Perlodes 



We thank C. Schomaker, O. Schröder, S. Hane and G. Simon for their assistance during the field work. L. Engel, M. Mährlein, M. Beck, J. Schreiber and M. Brauns helped with the sample processing and determination of the invertebrates. T. Hintze provided his technical assistance for the pressure loggers. Mrs. Heide Bogumil from Wasserstraßen-Neubauamt Berlin kindly provided the vessel counts for the locks at Charlottenburg and Kleinmachnow in 2009. A. McFall commented on the English language.

This study has been funded as part of the IWRM-net project “FORECASTER” by the German Federal Ministry for Education and Research (grant number 02WM1031). X-FG and CW received further funding by the European Union FP7 project “REFORM” (grant number 282656).


  1. bij de Vaate A, Jazdzewski K, Ketelaars HA, Gollasch S, van der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can J Fish Aquat Sci 59:1159–1174. doi: 10.1139/f02-098 CrossRefGoogle Scholar
  2. Caraco N, Cole J, Findlay S, Wigand C (2006) Vascular plants as engineers of oxygen in aquatic systems. Bioscience 56:219–225. doi: 10.1641/0006-3568(2006)056[0219:VPAEOO]2.0.CO;2 CrossRefGoogle Scholar
  3. Cyr H, Downing JA (1988) The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshw Biol 20:365–374. doi: 10.1111/j.1365-2427.1988.tb00462.x CrossRefGoogle Scholar
  4. Dall PC (1979) A sampling technique for littoral stone dwelling organisms. Oikos 33:106–112CrossRefGoogle Scholar
  5. Diehl S, Kornijów R (1998) Influence of submerged macrophytes on trophic interactions among fish and macroinvertebates. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 24–46CrossRefGoogle Scholar
  6. Doyle RD (2001) Effects of waves on the early growth of Vallisneria americana. Freshw Biol 46:389–397. doi: 10.1046/j.1365-2427.2001.00668.x CrossRefGoogle Scholar
  7. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi: 10.1017/S1464793105006950 CrossRefPubMedGoogle Scholar
  8. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi: 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 Google Scholar
  9. Eriksson B, Sandstrom A, Isæus M, Schreiber H, Karås P (2004) Effects of boating activities on aquatic vegetation in the Stockholm archipelago, Baltic Sea. Estuar Coast Shelf S 61:339–349. doi: 10.1016/j.ecss.2004.05.009 CrossRefGoogle Scholar
  10. Francis RA (2014) Urban rivers: novel ecosystems, new challenges. Wiley Interdiscip Rev: Water 1:19–29. doi: 10.1002/wat2.1007 CrossRefGoogle Scholar
  11. Gabel F, Garcia X-F, Brauns M, Sukhodolov A, Leszinski M, Pusch MT (2008) Resistance to ship-induced waves of benthic invertebrates in various littoral habitats. Freshw Biol 53:1567–1578. doi: 10.1111/j.1365-2427.2008.01991.x CrossRefGoogle Scholar
  12. Gabel F, Pusch MT, Breyer P, Burmester V, Walz N, Garcia X-F (2011a) Differential effect of wave stress on the physiology and behaviour of native versus non-native benthic invertebrates. Biol Invasions 13:1843–1853. doi: 10.1007/s10530-011-0003-1 CrossRefGoogle Scholar
  13. Gabel F, Stoll S, Fischer P, Pusch MT, Garcia X-F (2011b) Waves affect predator-prey interactions between fish and benthic invertebrates. Oecologia 165:101–109. doi: 10.1007/s00442-010-1841-8 CrossRefPubMedGoogle Scholar
  14. Gabel F, Garcia X-F, Schnauder I, Pusch MT (2012) Effects of ship-induced waves on littoral benthic invertebrates. Freshw Biol 57:2425–2435. doi: 10.1111/fwb.12011 CrossRefGoogle Scholar
  15. Gallardo B, García M, Cabezas Á, González E, González M, Ciancarelli C, Comín FA (2008) Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat Sci 70:248–258. doi: 10.1007/s00027-008-8024-2 CrossRefGoogle Scholar
  16. Gallardo B, Dolédec S, Paillex A, Arscott DB, Sheldon F, Zilli F, Mérigoux S, Castella E, Comín FA (2014) Response of benthic macroinvertebrates to gradients in hydrological connectivity: a comparison of temperate, subtropical, Mediterranean and semiarid river floodplains. Freshw Biol 59:630–648. doi: 10.1111/fwb.12292 CrossRefGoogle Scholar
  17. Giraudoux P (2016) pgirmess: Data analysis in ecology (Version 1.6.4). Accessed 30 March 2016
  18. Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams - a review. Int Rev Hydrobiol 86:383–393. doi: 10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-D CrossRefGoogle Scholar
  19. Hering D, Moog O, Sandin L, Verdonschot PFM (2004) Overview and application of the AQEM assessment system. Hydrobiologia 516:1–20. doi: 10.1023/B:HYDR.0000025255.70009.a5 CrossRefGoogle Scholar
  20. Hoggart SPG, Francis RA, Chadwick MA (2012) Macroinvertebrate richness on flood defence walls of the tidal river Thames. Urban Ecosyst 15:327–346. doi: 10.1007/s11252-011-0221-4 CrossRefGoogle Scholar
  21. Kaden S, Kantelberg G, Rehfeld-Klein M, Sauer C, Schumacher F, Walther J (2002) Hydrologie. In: Köhler J, Gelbrecht J, Pusch MT (eds) Die Spree - Zustand, Probleme, Entwicklungsmöglichkeiten, Limnologie Aktuell Vol. 10. Schweizerbart Science Publishers, Stuttgart, pp 37–61Google Scholar
  22. Karatayev AY, Burlakova LE, Padilla DK, Mastitsky SE, Olenin S (2009) Invaders are not a random selection of species. Biol Invasions 11:2009–2019. doi: 10.1007/s10530-009-9498-0 CrossRefGoogle Scholar
  23. Kornijów R, Moss B (2003) Do night oxygen depletions contribute to the summer decline in abundance of zoobenthos in lake littoral? Int Ver the 28:1899–1901Google Scholar
  24. Kornijow R, Strayer DL, Caraco NF (2010) Macroinvertebrate communities of hypoxic habitats created by an invasive plant (Trapa natans) in the freshwater tidal Hudson River. Fundam Appl Limnol 176:199–207. doi: 10.1127/1863-9135/2010/0176-0199 CrossRefGoogle Scholar
  25. Lamouroux N, Dolédec S, Gayraud S (2004) Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. J N Am Benthol Soc 23:449–466. doi: 10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2 CrossRefGoogle Scholar
  26. LAWA (Bund/Länder-Arbeitsgemeinschaft Wasser) (2013) Handbuch zur Bewertung und planerischen Bearbeitung von erheblich veränderten Gewässern (HMWB) und künstlichen Gewässern (AWB) Accessed 30 March 2016
  27. Lodge DM (1991) Herbivory on freshwater macrophytes. Aquat Bot 41:195–224. doi: 10.1016/0304-3770(91)90044-6 CrossRefGoogle Scholar
  28. Lorenz S, Gabel F, Dobra N, Pusch MT (2013) Modelling the effects of recreational boating on self-purification activity provided by bivalve mollusks in a lowland river. Freshwater Sci 32:82–93. doi: 10.1899/12-054.1 CrossRefGoogle Scholar
  29. McMahon RF (1983) Physiological ecology of freshwater pulmonates. In: Rusell-Hunter WD (ed) The Mollusca, Ecology, vol 6. Academic Press, New York, pp 359–430Google Scholar
  30. Meier C, Haase P, Rolauffs P, Schindehütte K, Schöll F, Sundermann A, Hering D (2006) Methodisches Handbuch Fließgewässerbewertung. Handbuch zur Untersuchung und Bewertung von Fließgewässern auf der Basis des Makrozoobenthos vor dem Hintergrund der EG-Wasserrahmenrichtlinie. Accessed 30 March 2016
  31. Miranda LE (2005) Fish assemblages in Oxbow Lakes relative to connectivity with the Mississippi River. T Am Fish Soc 134:1480–1489. doi: 10.1577/T05-057.1 CrossRefGoogle Scholar
  32. Murphy KJ, Eaton JW (1983) Effects of pleasure-boat traffic on macrophyte growth in canals. J Appl Ecol 20:713–729. doi: 10.2307/2403122 CrossRefGoogle Scholar
  33. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) vegan: Community Ecology Package (Version 2.3–4). Accessed 30 March 2016
  34. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365. doi: 10.1007/978-0-387-73412-5_12 CrossRefGoogle Scholar
  35. Pusch MT, Michels U, Feld CK, Berger T, Garcia X-F, Grünert U, Klausnitzer B (2002) Benthische Wirbellose. In: Köhler J, Gelbrecht J, Pusch MT (eds) Die Spree - Zustand, Probleme, Entwicklungsmöglichkeiten, Limnologie Aktuell Vol. 10. Schweizerbart Science Publishers, Stuttgart, pp 166–185Google Scholar
  36. R Development Core Team (2016) R: A language and environment for statistical computing (Version 3.2.4). Accessed 30 March 2016
  37. Rahel FJ (2002) Homogenization of freshwater faunas. Annu Rev Ecol Syst 33:291–315. doi: 10.1146/annurev.ecolsys.33.010802.150429 CrossRefGoogle Scholar
  38. Roberts DW (2016) labdsv: Ordination and Multivariate Analysis for Ecology (Version 1.8–0). Accessed 30 March 2016
  39. Schmidt-Kloiber A, Hering, D (2013) - the taxa and autecology database for freshwater organisms. Accessed 28 October 2013
  40. Schröder M, Kiesel J, Schattmann A, Jähnig SC, Lorenz AW, Kramm S, Keizer-Vlek H, Rolauffs P, Graf W, Leitner P, Hering D (2013) Substratum associations of benthic invertebrates in lowland and mountain streams. Ecol Indic 30:178–189. doi: 10.1016/j.ecolind.2013.02.012 CrossRefGoogle Scholar
  41. SenGUV (Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz) (2007) Bewertung des ökologischen Zustandes der Berliner Spree anhand des Makrozoobenthos ausgewählter Flussabschnitte. Germany, Berlin Accessed 30 March 2016Google Scholar
  42. SenGUV (Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz) (2010) Untersuchung des Makrozoobenthos in ausgewählten großen Fließgewässern und Kanälen von Berlin. Germany, Berlin Accessed 30 March 2016Google Scholar
  43. SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt) (2005) Datenbank für das Gesamtregister der Pflanzen- und Tierarten in den Berliner Roten Listen 2005 (Version 2.8). Berlin, Germany. Accessed 30 March 2016
  44. Söhngen B, Koop J, Knight S, Rythönen J, Beckwith P, Ferrari N, Iribarren J, Keevin T, Wolter C, Maynord S (2008) Considerations to reduce environmental impacts of vessels, report n°9. PIANC, BrusselsGoogle Scholar
  45. Strayer DL (2012) Eight questions about invasions and ecosystem functioning. Ecol Lett 15:1199–1210. doi: 10.1111/j.1461-0248.2012.01817.x CrossRefPubMedGoogle Scholar
  46. Strayer DL, Findlay SEG (2010) Ecology of freshwater shore zones. Aquat Sci 72:127–163. doi: 10.1007/s00027-010-0128-9 CrossRefGoogle Scholar
  47. Strayer DL, Lutz C, Malcom HM, Munger K, Shaw WH (2003) Invertebrate communities associated with a native (Vallisneria americana) and an alien (Trapa natans) macrophyte in a large river. Freshw Biol 48:1938–1949. doi: 10.1046/j.1365-2427.2003.01142.x CrossRefGoogle Scholar
  48. Sukhodolova T, Weber A, Zhang J, Wolter C (2017) Effects of macrophyte development on the oxygen metabolism of an urban river rehabilitation structure. Sci Total Environ 574:1125–1130. doi: 10.1016/j.scitotenv.2016.08.174 CrossRefPubMedGoogle Scholar
  49. van den Brink FWB, van der Velde G, bij de Vaate A (1993) Ecological aspects, explosive range extension and impact of a mass invader, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the lower Rhine (the Netherlands). Oecologia 93:224–232. doi: 10.1007/BF00317675 CrossRefPubMedGoogle Scholar
  50. Vermaat JE, de Bruyne RJ (1993) Factors limiting the distribution of submerged waterplants in the lowland river Vecht (the Netherlands). Freshw Biol 30:147–157. doi: 10.1111/j.1365-2427.1993.tb00795.x CrossRefGoogle Scholar
  51. Vermonden K, Leuven RSEW, van der Velde G (2010) Environmental factors determining invasibility of urban waters for exotic macroinvertebrates. Divers Distrib 16:1009–1021. doi: 10.1111/j.1472-4642.2010.00702.x CrossRefGoogle Scholar
  52. Walker PD, Wijnhoven S, van der Velde G (2013) Macrophyte presence and growth form influence macroinvertebrate community structure. Aquat Bot 104:80–87. doi: 10.1016/j.aquabot.2012.09.003 CrossRefGoogle Scholar
  53. Warfe DM, Barmuta LA (2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141:171–178. doi: 10.1007/s00442-004-1644-x CrossRefPubMedGoogle Scholar
  54. Weber A, Lautenbach S, Wolter C (2012) Improvement of aquatic vegetation in urban waterways using protected artificial shallows. Ecol Eng 42:160–167. doi: 10.1016/j.ecoleng.2012.01.007 CrossRefGoogle Scholar
  55. Weber A, Zhang J, Nardin A, Sukhodolov A, Wolter C (2016) The influence of aquatic vegetation on the hydrodynamics of an alternative bank protection measure in a navigable waterway. River Res Appl 32:2071–2080. doi: 10.1002/rra.3052 CrossRefGoogle Scholar
  56. Williams DD, Feltmate BW (1992) Aquatic insects. CAB International, Wallingford, OxonGoogle Scholar
  57. Wolter C (2010) Functional vs scenic restoration - challenges to improve fish and fisheries in urban waters. Fish Manag Ecol 17:176–185. doi: 10.1111/j.1365-2400.2009.00725.x CrossRefGoogle Scholar
  58. Wolter C, Arlinghaus R, Sukhodolov A, Engelhardt C (2004) A model of navigation-induced currents in inland waterways and implications for juvenile fish displacement. Environ Manag 34:656–668. doi: 10.1007/s00267-004-0201-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Department of Biology, Chemistry and PharmacyFU BerlinBerlinGermany
  3. 3.Federal Institute of HydrologyKoblenzGermany

Personalised recommendations