Advertisement

Urban Ecosystems

, Volume 20, Issue 4, pp 897–909 | Cite as

Determinants of species richness within and across taxonomic groups in urban green spaces

  • Sarah A. MatthiesEmail author
  • Stefan Rüter
  • Frank Schaarschmidt
  • Rüdiger Prasse
Article

Abstract

Urban green spaces provide habitat for numerous plant and animal species. However, currently we have little knowledge on which determinants drive the species richness within and across taxonomic groups. In this paper we investigate the determinants of total, native, and endangered species richness for vascular plants, birds, and mammals within and across taxonomic groups. We examined a stratified random sample of 32 urban green spaces in Hannover, Germany. Species inventories for plants and birds were generated on the basis of line transect surveys. Mammals were surveyed by means of point counts using camera traps. Using a principal component analysis and multiple regression models, we tested 10 explanatory variables for species-area effects, distance effects, and the effects of habitat structure of green spaces on species richness. When analyzing single explanatory variables, we determined that the species richness of all groups was significantly positively correlated to patch area, number of habitat types, and a short distance to the nearest green space. Testing combined effects of variables showed that patch area in combination with habitat heterogeneity was most important for plants (total, native, and endangered), birds (total and native), and overall species richness. This emphasizes the importance of the species-area effect and the effects of habitat structure on species richness in urban green spaces. We conclude that, in the context of urban planning, it is important to conserve large green spaces that include a high diversity of habitats to maintain high species richness.

Keywords

Biodiversity Urban ecology Multivariable approach Patch area Habitat heterogeneity 

Notes

Acknowledgments

This joint research project was financially supported by the State of Lower Saxony, Hannover, Germany (VWZN2631). We thank H. Grebe for providing digital data and M. Bienek, G. Brunotte, L. Busse, I. Fischer, G. Garnatz, H. Geiges, S. Hallex, H. Illmer, B. Karrasch, C. Peter, H. Scharping, N. Voßler, A. Wenau, C. Wohnrade for the opportunity to conduct field surveys. We are grateful to M. D. Graf and L. von Falkenhayn for proofreading the English manuscript. We also thank two anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

This research paper contains data on bird and mammal species. Animals were only identified by sighting or hearing and no animals were captured during data collection. Therefore, the welfare of animals should not be negatively affected by the research.

Supplementary material

11252_2017_642_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1.23 mb)
11252_2017_642_MOESM2_ESM.pdf (112 kb)
ESM 2 (PDF 112 kb)
11252_2017_642_MOESM3_ESM.pdf (78 kb)
ESM 3 (PDF 77.7 kb)
11252_2017_642_MOESM4_ESM.pdf (147 kb)
ESM 4 (PDF 147 kb)
11252_2017_642_MOESM5_ESM.pdf (925 kb)
ESM 5 (PDF 925 kb)
11252_2017_642_MOESM6_ESM.pdf (60 kb)
ESM 6 (PDF 60.1 kb)
11252_2017_642_MOESM7_ESM.pdf (68 kb)
ESM 7 (PDF 67.9 kb)
11252_2017_642_MOESM8_ESM.pdf (79 kb)
ESM 8 (PDF 78.5 kb)
11252_2017_642_MOESM9_ESM.pdf (65 kb)
ESM 9 (PDF 64.5 kb)

References

  1. Angel S, Parent J, Civco DL (2010) Ten compactness properties of circles: measuring shape in geography. Can Geogr 54:441–461. doi: 10.1111/j.1541-0064.2009.00304.x CrossRefGoogle Scholar
  2. Angold PG, Sadler JP, Hill MO, Pullin A, Rushton S, Austin K, Small E, Wood B, Wadsworth R, Sanderson R, Thompson K (2006) Biodiversity in urban habitat patches. Sci Total Environ 360:196–204. doi: 10.1016/j.scitotenv.2005.08.035 CrossRefPubMedGoogle Scholar
  3. Barthel PH, Helbig AJ (2005) Artenliste der Vögel Deutschlands. Limicola 19:89–111Google Scholar
  4. Bell S, McCoy ED, Mushinsky HR (eds) (1991) Habitat structure. The physical arrangement of objects in space. Springer, Dordrecht. doi: 10.1007/978-94-011-3076-9 Google Scholar
  5. Bibby JC, Burgess ND, Hill DA (1995) Methoden der Feldornithologie. Bestandserfassung in der Praxis, Neumann, RadebeulGoogle Scholar
  6. Bräuniger C, Knapp S, Kühn I, Klotz S (2010) Testing taxonomic and landscape surrogates for biodiversity in an urban setting. Landscape Urban Plan 97:283–295. doi: 10.1016/j.landurbplan.2010.07.001 CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  8. Bushnell (2011) Trophy Cam XLT. Instruction ManualGoogle Scholar
  9. Buttler KP, Hand R (2008) Liste der Gefäßpflanzen Deutschlands. Kochia, Beiheft 1:1–107Google Scholar
  10. Carbó-Ramírez P, Zuria I (2011) The value of small urban greenspaces for birds in a Mexican city. Landscape Urban Plan 100:213–222. doi: 10.1016/j.landurbplan.2010.12.008 CrossRefGoogle Scholar
  11. Čepelová B, Münzbergová Z (2012) Factors determining the plant species diversity and species composition in a suburban landscape. Landscape Urban Plan 106:336–346. doi: 10.1016/j.landurbplan.2012.04.008 CrossRefGoogle Scholar
  12. Chamberlain DE, Gough S, Vaughan H, Vickery JA, Appleton GF (2007) Determinants of bird species richness in public green spaces: capsule bird species richness showed consistent positive correlations with site area and rough grass. Bird Study 54:87–97. doi: 10.1080/00063650709461460 CrossRefGoogle Scholar
  13. Chiarucci A, Palmer MW (2005) The inventory and estimation of plant species richness. Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, OxfordGoogle Scholar
  14. Cornelis J, Hermy M (2004) Biodiversity relationships in urban and suburban parks in Flanders. Landscape Urban Plan 69:385–401. doi: 10.1016/j.landurbplan.2003.10.038 CrossRefGoogle Scholar
  15. Crooks KR, Suarez AV, Bolger DT, Soulé ME (2001) Extinction and colonization of birds on Habitat Islands. Conserv Biol 15:159–172. doi: 10.1046/j.1523-1739.2001.99379.x CrossRefGoogle Scholar
  16. Crooks KR, Sanjayan M (eds) (2006) Connectivity conservation. Cambridge University Press, CambridgeGoogle Scholar
  17. Czamanski D, Benenson I, Malkinson D, Marinov M, Roth R, Wittenberg L (2008) Urban sprawl and ecosystems - can nature survive? International Review of Environmental and Resource Economics 2:321–366. doi: 10.1561/101.00000019 CrossRefGoogle Scholar
  18. Czamanski D, Malkinson D, Toger M (2014) Nature in future cities: prospects and a planning agenda. Built Environ 40:508–520CrossRefGoogle Scholar
  19. DeCandido R (2004) Recent changes in plant species diversity in urban Pelham Bay park, 1947–1998. Biol Conserv 120:129–136. doi: 10.1016/j.biocon.2004.02.005 CrossRefGoogle Scholar
  20. Drachenfels Ov (2011) Kartierschlüssel für Biotoptypen in Niedersachsen unter besonderer Berücksichtigung der gesetzlich geschützten Biotope sowie der Lebensraumtypen von Anhang I der FFH-Richtlinie. Naturschutz und Landespflege in Niedersachsen, Heft A/4:1–326Google Scholar
  21. EC – European Commission (2013) Building a green infrastructure for Europe. Publications office of the European Union, LuxembourgGoogle Scholar
  22. Erhardt W, Götz E, Bödeker N, Seybold S (2008) Zander. Handwörterbuch der Pflanzennamen: dictionary of plant names = Dictionnaire des noms de plants. Eugen Ulmer, StuttgartGoogle Scholar
  23. Faraway JJ (2005) Linear models with R. Texts in statistical science, v. 63. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  24. Ferenc M, Sedláček O, Fuchs R (2014) How to improve urban greenspace for woodland birds: site and local-scale determinants of bird species richness. Urban Ecosyst 17:625–640. doi: 10.1007/s11252-013-0328-x CrossRefGoogle Scholar
  25. Fischer LK, von der Lippe M, Kowarik I (2013) Urban land use types contribute to grassland conservation: the example of Berlin. Urban For Urban Gree 12:263–272. doi: 10.1016/j.ufug.2013.03.009 CrossRefGoogle Scholar
  26. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  27. Freeman C, Buck O (2003) Development of an ecological mapping methodology for urban areas in New Zealand. Landscape Urban Plan 63:161–173. doi: 10.1016/S0169-2046(02)00188-3 CrossRefGoogle Scholar
  28. Garden J, McAlpine C, Peterson A, Jones D, Possingham H (2006) Review of the ecology of Australian urban fauna: a focus on spatially explicit processes. Austral Ecol 31:126–148. doi: 10.1111/j.1442-9993.2006.01578.x CrossRefGoogle Scholar
  29. Garden JG, McAlpine CA, Possingham HP, Jones DN (2007) Habitat structure is more important than vegetation composition for local-level management of native terrestrial reptile and small mammal species living in urban remnants: a case study from Brisbane, Australia. Austral Ecol 32:669–685. doi: 10.1111/j.1442-9993.2007.01750.x CrossRefGoogle Scholar
  30. Garden JG, McAlpine CA, Possingham HP (2010) Multi-scaled habitat considerations for conserving urban biodiversity: native reptiles and small mammals in Brisbane, Australia. Landscape Ecol 25:1013–1028. doi: 10.1007/s10980-010-9476-z CrossRefGoogle Scholar
  31. Garve E (2004) Rote Liste und Florenliste der Farn- und Blütenpflanzen in Niedersachsen und Bremen. Informationsdienst Naturschutz Niedersachsen 1(2004):1–76Google Scholar
  32. González-Oreja JA, Barillas-Gómez AL, Bonache-Regidor C, Buzo-Franco D, García-Guzmán J, Hernández-Santín L (2012) Does habitat heterogeneity affect bird community structure in urban parks? In: Lepczyk CA, Warren PS (eds) Urban bird ecology and conservation. Studies in Avian Biology (45). University of California Press, Berkeley, pp 1–14Google Scholar
  33. Guntenspergen GR, Levenson JB (1997) Understory plant species composition in remnant stands along an urban-to-rural land-use gradient. Urban Ecosyst 1:155–169. doi: 10.1023/a:1018523511071 CrossRefGoogle Scholar
  34. Harrell FE (2001) Regression Modeling Strategies. With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer Series in Statistics. Springer New York, New YorkGoogle Scholar
  35. Heckenroth H (1993) Rote Liste der in Niedersachsen und Bremen gefährdeten Säugetierarten. Informationsdienst Naturschutz Niedersachsen 6(93):221–226Google Scholar
  36. Hermy M, Cornelis J (2000) Towards a monitoring method and a number of multifaceted and hierarchical biodiversity indicators for urban and suburban parks. Landscape Urban Plan 49:149–162. doi: 10.1016/S0169-2046(00)00061-X CrossRefGoogle Scholar
  37. Hodgkison S, Hero J, Warnken J (2007) The efficacy of small-scale conservation efforts, as assessed on Australian golf courses. Biol Conserv 136:576–586. doi: 10.1016/j.biocon.2006.11.001 CrossRefGoogle Scholar
  38. Husté A, Selmi S, Boulinier T (2006) Bird communities in suburban patches near Paris: determinants of local richness in a highly fragmented landscape. Ecoscience 13:249–257. doi: 10.2980/i1195-6860-13-2-249.1 CrossRefGoogle Scholar
  39. Husté A, Boulinier T (2007) Determinants of local extinction and turnover rates in urban bird communities. Ecol Appl 17:168–180CrossRefPubMedGoogle Scholar
  40. Jokimäki J (1999) Occurrence of breeding bird species in urban parks: effects of park structure and broad-scale variables. Urban Ecosyst 3:21–34. doi: 10.1023/A:1009505418327 CrossRefGoogle Scholar
  41. Kallimanis AS, Mazaris AD, Tzanopoulos J, Halley JM, Pantis JD, Sgardelis SP (2008) How does habitat diversity affect the species–area relationship? Glob Ecol Biogeogr 17:532–538. doi: 10.1111/j.1466-8238. 2008.00393.x CrossRefGoogle Scholar
  42. Knapp S, Kühn I, Mosbrugger V, Klotz S (2008) Do protected areas in urban and rural landscapes differ in species diversity? Biodivers Conserv 17:1595–1612. doi: 10.1007/s10531-008-9369-5 CrossRefGoogle Scholar
  43. Koh LP, Sodhi NS (2004) Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecol Appl 14:1695–1708. doi: 10.1890/03-5269 CrossRefGoogle Scholar
  44. Krebs CJ (1989) Ecological methodology. Harper & Row, New YorkGoogle Scholar
  45. Krüger T, Oltmanns B (2007) Rote Liste der in Niedersachsen und Bremen gefährdeten Brutvögel. Informationsdienst Naturschutz Niedersachsen 3(2007):131–175Google Scholar
  46. Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764Google Scholar
  47. Lang S, Blaschke T (2007) Landschaftsanalyse mit GIS. UTB, vol 8347. Ulmer, StuttgartGoogle Scholar
  48. La Sorte FA, Aronson MFJ, Williams NSG, Celesti-Grapow L, Cilliers S, Clarkson BD, Dolan RW, Hipp A, Klotz S, Kühn I, Pyšek P, Siebert S, Winter M (2014) Beta diversity of urban floras among European and non-European cities. Glob Ecol Biogeogr 23:769–779. doi: 10.1111/geb.12159 CrossRefGoogle Scholar
  49. LGN (2007) ATKIS (Amtlich Topographisch-Kartographisches Informationssystem) Basis DLM (Digitales Landschaftsmodell) im Maßstab 1:10.000 bis 1:25.000Google Scholar
  50. Li W, Ouyang Z, Meng X, Wang X (2006) Plant species composition in relation to green cover configuration and function of urban parks in Beijing, China. Ecol Res 21:221–237. doi: 10.1007/s11284-005-0110-5 CrossRefGoogle Scholar
  51. Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445. doi: 10.2307/3100099 CrossRefGoogle Scholar
  52. Lizée M-H, Tatoni T, Deschamps-Cottin M (2016) Nested patterns in urban butterfly species assemblages: respective roles of plot management, park layout and landscape features. Urban Ecosyst 19:205–224. doi: 10.1007/s11252-015-0501-5 CrossRefGoogle Scholar
  53. Löfvenhaft K, Björn C, Ihse M (2002) Biotope patterns in urban areas: a conceptual model integrating biodiversity issues in spatial planning. Landscape Urban Plan 58:223–240. doi: 10.1016/S0169-2046(01)00223-7 CrossRefGoogle Scholar
  54. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  55. MacGregor-Fors I, Morales-Pérez L, Schondube JE (2011) Does size really matter? Species-area relationships in human settlements. Divers Distrib 17:112–121. doi: 10.1111/j.1472-4642.2010.00714.x CrossRefGoogle Scholar
  56. MacGregor-Fors I, Ortega-Álvarez R (2011) Fading from the forest: bird community shifts related to urban park site-specific and landscape traits. Urban For Urban Gree 10:239–246. doi: 10.1016/j.ufug.2011.03.004 CrossRefGoogle Scholar
  57. Matthies S, Kopel D, Rüter S, Toger M, Prasse R, Czamanski D, Malkinson D (2013) Vascular plant species richness patterns in urban environments: case studies from Hannover, Germany and Haifa, Israel. In: Malkinson D, Czamanski D, Benenson I (eds). Modeling of Land-Use and Ecological Dynamics, Springer, Berlin, Heidelberg, pp 107–119. doi: 10.1007/978-3-642-40199-2_6
  58. Matthies SA, Rüter S, Prasse R, Schaarschmidt F (2015) Factors driving the vascular plant species richness in urban green spaces: using a multivariable approach. Landscape Urban Plan 134:177–187. doi: 10.1016/j.landurbplan.2014.10.014 CrossRefGoogle Scholar
  59. McKinney ML, Lockwood JL (2001) Biotic homogenization: a sequential and selective process. In: Lockwood JL, McKinney ML (eds) Biotic homogenization. Kluwer Academic/Plenum Publishers, New York, pp 1–17Google Scholar
  60. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi: 10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
  61. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176. doi: 10.1007/s11252-007-0045-4 CrossRefGoogle Scholar
  62. Meffert PJ, Dziock F (2012) What determines occurrence of threatened bird species on urban wastelands? Biol Conserv 153:87–96. doi: 10.1016/j.biocon.2012.04.018 CrossRefGoogle Scholar
  63. Nielsen AB, van den Bosch M, Maruthaveeran S, Konijnendijk van den Bosch C (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327. doi: 10.1007/s11252-013-0316-1 CrossRefGoogle Scholar
  64. Oliver AJ, Hong-Wa C, Devonshire J, Olea KR, Rivas GF, Gahl MK (2011) Avifauna richness enhanced in large, isolated urban parks. Landscape Urban Plan 102:215–225. doi: 10.1016/j.landurbplan.2011.04.007 CrossRefGoogle Scholar
  65. Opdam P (2002) Assessing the conservation potential of habitat networks. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York, pp 381–404CrossRefGoogle Scholar
  66. Opdam P, Pouwels R, Rooij SV, Steingröver E, Vos CC (2008) Setting biodiversity targets in participatory regional planning: introducing Ecoprofiles. Ecol Soc 13:20CrossRefGoogle Scholar
  67. Pellissier V, Cohen M, Boulay A, Clergeau P (2012) Birds are also sensitive to landscape composition and configuration within the city Centre. Landscape Urban Plan 104:181–188. doi: 10.1016/j.landurbplan.2011.10.011 CrossRefGoogle Scholar
  68. Platt A, Lill A (2006) Composition and conservation value of bird assemblages of urban ‘habitat islands’: do pedestrian traffic and landscape variables exert an influence? Urban Ecosyst 9:83–97. doi: 10.1007/s11252-006-7900-6 CrossRefGoogle Scholar
  69. Pyšek P, Chocholoušková Z, Pyšek A, Jarošík V, Chytrý M, Tichý L (2004) Trends in species diversity and composition of urban vegetation over three decades. J Veg Sci 15:781–788. doi: 10.1111/j.1654-1103.2004.tb02321.x CrossRefGoogle Scholar
  70. Qiu L, Lindberg S, Nielsen AB (2013) Is biodiversity attractive? –On-site perception of recreational and biodiversity values in urban green space. Landscape Urban Plan 119:136–146. doi: 10.1016/j.landurbplan.2013.07.007 CrossRefGoogle Scholar
  71. Ricklefs RE, Miller G (2000) Ecology, Fourth edn. W. H. Freeman and Company, New YorkGoogle Scholar
  72. Saito M, Koike F (2013) Distribution of wild mammal assemblages along an urban-rural-forest landscape gradient in warm-temperate East Asia. PLoS One 8:e65464. doi: 10.1371/journal.pone.0065464 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sandström UG, Angelstam P, Mikusiński G (2006) Ecological diversity of birds in relation to the structure of urban green space. Landscape Urban Plan 77:39–53. doi: 10.1016/j.landurbplan.2005.01.004 CrossRefGoogle Scholar
  74. Seitz B, Ristow M, Prasse R, Machatzi B, Klemm G, Böcker R, Sukopp H (2012) Der Berliner Florenatlas. Beihefte zu den Verhandlungen des Botanischen Vereins von Berlin und Brandenburg 7:1–533Google Scholar
  75. Shwartz A, Shirley S, Kark S (2008) How do habitat variability and management regime shape the spatial heterogeneity of birds within a large Mediterranean urban park? Landscape Urban Plan 84:219–229. doi: 10.1016/j.landurbplan.2007.08.003 CrossRefGoogle Scholar
  76. Snep RPH, Wallis DeVries MF, Opdam P (2011) Conservation where people work: a role for business districts and industrial areas in enhancing endangered butterfly populations? Landscape Urban Plan 103:94–101. doi: 10.1016/j.landurbplan.2011.07.002 CrossRefGoogle Scholar
  77. Südbeck P, Andretzke H, Fischer S, Gedeon K, Schikore T, Schröder K, Sudfeldt C (eds) (2005) Methodenstandards zur Erfassung der Brutvögel Deutschlands, RadolfzellGoogle Scholar
  78. Tchoukanski I (2011) ET Spatial Techniques. www.ian-ko.com Accessed 13 Oct 2015
  79. Toger M, Malkinson D, Benenson I, Czamanski D (2015) The connectivity of Haifa urban open space network. Environ Plann B 0:1–23. doi: 10.1177/0265813515598991 Google Scholar
  80. Tonietto R, Fant J, Ascher J, Ellis K, Larkin D (2011) A comparison of bee communities of Chicago green roofs, parks and prairies. Landscape Urban Plan 103:102–108. doi: 10.1016/j.landurbplan.2011.07.004 CrossRefGoogle Scholar
  81. Turner K, Lefler L, Freedman B (2005) Plant communities of selected urbanized areas of Halifax, Nova Scotia, Canada. Landscape Urban Plan 71:191–206. doi: 10.1016/j.landurbplan.2004.03.003 CrossRefGoogle Scholar
  82. Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519. doi: 10.1016/j.biocon.2005.01.001 CrossRefGoogle Scholar
  83. van Heezik Y, Freeman C, Porter S, Dickinson KJM (2013) Garden size, householder knowledge, and socio-economic status influence plant and bird diversity at the scale of individual gardens. Ecosystems 16:1442–1454. doi: 10.1007/s10021-013-9694-8 CrossRefGoogle Scholar
  84. Verboom J, Pouwels R (2004) Ecological functioning of ecological net-works: a species perspective. In: Jongman RHG, Pungetti G (eds) Ecological networks and greenways: concept, design, implementation. Cambridge University Press, Cambridge, pp 65–72Google Scholar
  85. Vilisics F, Hornung E (2009) Urban areas as hot-spots for introduced and shelters for native isopod species. Urban Ecosyst 12:333–345. doi: 10.1007/s11252-009-0097-8 CrossRefGoogle Scholar
  86. Wania A, Kühn I, Klotz S (2006) Plant richness patterns in agricultural and urban landscapes in Central Germany - spatial gradients of species richness. Landscape Urban Plan 75:97–110. doi: 10.1016/j.landurbanplan.2004.12.006 CrossRefGoogle Scholar
  87. Weisberg S (2005) Applied linear regression. In: Shewhart WA, Wilks SS (eds) Wiley series in probability and statistics, Third edn. Wiley & Sons, Hoboken, pp 1–310Google Scholar
  88. Widdows CD, Ramesh T, Downs CT (2015) Factors affecting the distribution of large spotted genets (Genetta tigrina) in an urban environment in South Africa. Urban Ecosyst. doi: 10.1007/s11252-015-0449-5 Google Scholar
  89. Zerbe S, Maurer U, Schmitz S, Sukopp H (2002) Biodiversity in Berlin and its potential for nature conservation. Landscape Urban Plan 62:139–148. doi: 10.1016/S0169-2046(02)00145-7 CrossRefGoogle Scholar
  90. Zipperer WC, Wu J, Pouyat RV, Pickett STA (2000) The application of ecological principles to urban and urbanizing landscapes. Ecol Appl 10:685–688CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sarah A. Matthies
    • 1
    Email author
  • Stefan Rüter
    • 1
  • Frank Schaarschmidt
    • 2
  • Rüdiger Prasse
    • 1
  1. 1.Leibniz Universität HannoverInstitute of Environmental PlanningHannoverGermany
  2. 2.Leibniz Universität HannoverInstitute of BiostatisticsHannoverGermany

Personalised recommendations