Urban Ecosystems

, Volume 20, Issue 2, pp 497–509 | Cite as

Mapping forest structure and uncertainty in an urban area using leaf-off lidar data

  • Huan GuEmail author
  • Philip A. Townsend


Forests are important to nutrient cycling, hydrology, climate and aesthetics in urban ecosystems. Effective forest management in urban environments requires detailed data on the spatial distribution and structure of urban forests, but the lidar which are best for mapping the complexity of these forests are often unavailable or prohibitively expensive for municipalities. However, leaf-off small footprint lidar originally collected for topographic mapping are increasingly available, and will soon become accessible to forest managers in the U.S. through 3DEP (3D Elevation Program). In this paper, we demonstrated the opportunistic use of existing leaf-off lidar to map forest structure and associated uncertainties in Madison, Wisconsin and neighboring municipalities. Using empirical models, we were able to map five structural variables and aboveground biomass with accuracies comparable to or better than other studies using comparable data and with errors generally <20 % of the data range. Highest uncertainties in our forest structure maps occurred in residential neighborhoods and along forest edges. From the results, we present maps of forest structure and, to our knowledge, first of a kind pixel-wise uncertainty maps for an urban area. These maps provide the basis for a spatially comprehensive assessment of forest resources and are effective for urban inventory and change assessment. For example, the maps enabled comprehensive comparison of carbon storage by urban trees among cities, with a range in our study of 1.2 kg/m2 to 5.6 kg/m2, and with major variations due to differences in city development patterns and ages.


Urban forests Forest structure Uncertainty Leaf-off lidar Carbon storage 



This research was funded by University of Wisconsin-Madison McIntire-Stennis Grant WIS01531. Sincere thanks to Aditya Singh for help in model analysis and Jordan Muss for lidar processing support. Thank you to Marty Dillenburg, Benjamin Spaier, Ryan Sword, Chase Wilson, Austin Pethan and Hannah Hubanks for assistance with fieldwork. We thank Fred Iausly and Kevin Connors (Dane County), Marla Eddy and Dave Davis (City of Madison), and Kirk Contrucci (Ayres Associates) for assistance in procuring lidar data. We also thank Matt Garcia and other members of Townsend Lab for helpful suggestions.


  1. 3DEP (2014) 3D elevation program. U.S. Geological Survey. Accessed 15 January 2015
  2. Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310. doi: 10.1016/s0038-092x(00)00089-x CrossRefGoogle Scholar
  3. Alvey AA (2006) Promoting and preserving biodiversity in the urban forest. Urban Forestry Urban Greening 5:195–201. doi: 10.1016/j.ufug.2006.09.003 CrossRefGoogle Scholar
  4. Anderson ES, Thompson JA, Austin RE (2005) LIDAR density and linear interpolator effects on elevation estimates. Int J Remote Sens 26(18):3889–3900. doi: 10.1080/01431160500181671 CrossRefGoogle Scholar
  5. Anderson RS, Bolstad PV (2013) Estimating aboveground biomass and average annual wood biomass increment with airborne leaf-on and leaf-off LiDAR in Great Lakes Forest types. North J Appl For 30(1):16–22. doi: 10.5849/njaf.12-015 CrossRefGoogle Scholar
  6. Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29:293–301CrossRefGoogle Scholar
  7. Bortolot ZJ (2006) Using tree clusters to derive forest properties from small footprint lidar data. Photogramm Eng Remote Sens 40351:1389–1397CrossRefGoogle Scholar
  8. Brandtberg T, Warner TA, Landenberger RE, McGraw JB (2003) Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens Environ 85(3):290–303. doi: 10.1016/s0034-4257(03)00008-7 CrossRefGoogle Scholar
  9. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world's upland forests. Oecologia 111(1):1–11. doi: 10.1007/s004420050201 CrossRefPubMedGoogle Scholar
  10. Day SD, Wiseman PE, Dickinson SB, Harris JR (2010) Tree root ecology in the urban environment and implications for a sustainable rhizosphere. Arboricult Urban For 36:193–205Google Scholar
  11. ESRI (2012) ArcGIS desktop, version 10.1 Environmental Systems Research Institute, Redlands, CAGoogle Scholar
  12. Fahey TJ, Woodbury PB, Battles JJ, Goodall CL, Hamburg SP, Ollinger SV, Woodall CW (2010) Forest carbon storage: ecology, management, and policy. Front Ecol Environ 8(5):245–252. doi: 10.1890/080169 CrossRefGoogle Scholar
  13. Farid A, Goodrich DC, Bryant R, Sorooshian S (2008) Using airborne lidar to predict leaf area index in cottonwood trees and refine riparian water-use estimates. J Arid Environ 72:1–15. doi: 10.1016/j.jaridenv.2007.04.010 CrossRefGoogle Scholar
  14. Frazer GW, Magnussen S, Wulder MA, Niemann KO (2011) Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens Environ 115(2):636–649. doi: 10.1016/j.rse.2010.10.008 CrossRefGoogle Scholar
  15. García M, Riaño D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in Central Spain using LiDAR height and intensity data. Remote Sens Environ 114:816–830. doi: 10.1016/j.rse.2009.11.021 CrossRefGoogle Scholar
  16. Gleason CJ, Im J (2012) Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ 125:80–91. doi: 10.1016/j.rse.2012.07.006 CrossRefGoogle Scholar
  17. Gonzalez P, Asner GP, Battles JJ, Lefsky MA, Waring KM, Palace M (2010) Forest carbon densities and uncertainties from Lidar, quick bird, and field measurements in California. Remote Sens Environ 114(7):1561–1575. doi: 10.1016/j.rse.2010.02.011 CrossRefGoogle Scholar
  18. Grosenbaugh LR (1952) Plotless timber estimates -- new, fast, easy. J For 50:32–37Google Scholar
  19. Grosenbauch LR (1958) Point-sampling and line-sampling: probability theory, geometric implications, synthesis. USDA Forest Service Southern Experiment Station Occasional Paper 160:1–34Google Scholar
  20. Gu (2015) Mapping forest structure, species gradients and growth in an urban area using lidar and hyperspectral imagery. The University of Wisconsin-Madison Dissertation, ProQuest Dissertations and Theses Order No 3680343:9–65Google Scholar
  21. Gu H, Singh A, Townsend PA (2015) Detection of gradients of forest composition in an urban area using imaging spectroscopy. Remote Sens Environ 167:168–180. doi: 10.1016/j.rse.2015.06.010 CrossRefGoogle Scholar
  22. Hawbaker TJ, Gobakken T, Lesak A, Tromborg E, Contrucci K, Radeloff V (2010) Light detection and ranging-based measures of mixed hardwood forest structure. For Sci 56(3):313–326Google Scholar
  23. Hodgson ME, Jensen J, Raber G, Tullis J, Davis BA, Thompson G, Schuckman K (2005) An evaluation of lidar-derived elevation and terrain slope in leaf-off conditions. Photogramm Eng Remote Sens 71(7):817–823CrossRefGoogle Scholar
  24. Hope D, Gries C, Zhu WX, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. Proc Natl Acad Sci U S A 100:8788–8792CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hudak AT, Crookston NL, Evans JS, Hall DE, Falkowski MJ (2008) Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens Environ 112(5):2232–2245. doi: 10.1016/j.rse.2007.10.009 CrossRefGoogle Scholar
  26. Hyde P, Dubayah R, Walker W, Blair JB, Hofton M, Hunsaker C (2006) Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sens Environ 102:63–73. doi: 10.1016/j.rse.2006.01.021 CrossRefGoogle Scholar
  27. Hyde P, Nelson R, Kimes D, Levine E (2007) Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sens Environ 106:28–38. doi: 10.1016/j.rse.2006.07.017 CrossRefGoogle Scholar
  28. Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2004) Comprehensive database of diameter-based biomass regressions for north American tree species. USDA Forest Service Northeastern Research Station General Technical Report NE-319:1–45Google Scholar
  29. Kellndorfer J, Walker W, Kirsch K, Fiske G, Bishop J, Lapoint L, Hoppus M, Westfall J (2013) NACP Aboveground biomass and carbon baseline data, V.2 (NBCD 2000), U.S.A., 2000. Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. doi:10.3334/ornldaac/1161Google Scholar
  30. Korhonen L, Korpela I, Heiskanen J, Maltamo M (2011) Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens Environ 115:1065–1080. doi: 10.1016/j.rse.2010.12.011 CrossRefGoogle Scholar
  31. Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. Bioscience 52:19–30CrossRefGoogle Scholar
  32. Lesak AA, Radeloff VC, Hawbaker TJ, Pidgeon AM, Gobakken T, Contrucci K (2011) Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sens Environ 115(11):2823–2835. doi: 10.1016/j.rse.2011.01.025 CrossRefGoogle Scholar
  33. Lim K, Treitz P, Baldwin K, Morrison I, Green J (2003) Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Can J Remote Sens 29:658–678CrossRefGoogle Scholar
  34. Lovasi GS, O’Neil-Dunne JPM, Lu JWT, Sheehan D, Perzanowshi MS, MacFaden SW, King KL, Matte T, Miller RL, Hoepner LA, Perera FP, Rundle A (2013) Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a New York City birth cohort. Environ Health Perspect 121:494–500PubMedPubMedCentralGoogle Scholar
  35. Lu DS, Chen Q, Wang GX, Moran E, Batistella M, Zhang M, Laurin GV, Saah D, Zhang MZ (2012) Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research 2012:436537 Article ID 436537CrossRefGoogle Scholar
  36. McPherson EG, Nowak D, Heisler G, Grimmond S, Souch C, Grant R, Rowntree R (1997) Quantifying urban forest structure, function, and value: the Chicago urban Forest climate project. Urban Ecosystems 1(1):49–61. doi: 10.1023/a:1014350822458 CrossRefGoogle Scholar
  37. Moskal LM, Zheng G (2012) Retrieving Forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous Forest. Remote Sens 4(1):1–20Google Scholar
  38. Morsdorf F, Kötz B, Meier E, Itten KI, Allgower B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61. doi: 10.1016/j.rse.2006.04.019 CrossRefGoogle Scholar
  39. Muss JD, Mladenoff DJ, Townsend PA (2011) A pseudo-waveform technique to assess forest structure using discrete lidar data. Remote Sens Environ 115:824–835. doi: 10.1016/j.rse.2010.11.008 CrossRefGoogle Scholar
  40. Myeong S, Nowak DJ, Duggin MJ (2006) A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens Environ 101:277–282. doi: 10.1016/j.rse.2005.12.001 CrossRefGoogle Scholar
  41. Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389CrossRefPubMedGoogle Scholar
  42. Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236. doi: 10.1016/j.envpol.2013.03.019 CrossRefPubMedGoogle Scholar
  43. Næsset E (2004) Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res 19:164–179. doi: 10.1080/02827580310019257 CrossRefGoogle Scholar
  44. Næsset E (2005) Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 98(2-3):356–370. doi: 10.1016/j.rse.2005.07.012 CrossRefGoogle Scholar
  45. Omasa K, Hosoi F, Uenishi TM, Shimizu Y, Akiyama Y (2008) Three-dimensional modeling of an urban park and trees by combined airborne and portable on-ground scanning LIDAR remote sensing. Environ Model Assess 13(4):473–481CrossRefGoogle Scholar
  46. Poland TM, McCullough DG (2006) Emerald ash borer: invasion of the urban forest and the threat to North America's ash resource. J For 104(3):118–124Google Scholar
  47. Popescu SC, Wynne RH, Scrivani JA (2004) Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. For Sci 50(4):551–565Google Scholar
  48. R Development Core Team (2013) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  49. Savard J-PL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landsc Urban Plan 48:131–142CrossRefGoogle Scholar
  50. Shrestha R, Wynne RH (2012) Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging lidar. Remote Sens 4(2):484–508CrossRefGoogle Scholar
  51. Swatantran A, Dubayah R, Roberts D, Hofton M, Blair JB (2011) Mapping biomass and stress in the sierra Nevada using lidar and hyperspectral data fusion. Remote Sens Environ 115:2917–2930. doi: 10.1016/j.rse.2010.08.027 CrossRefGoogle Scholar
  52. Townsend PA (2002) Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR. Int J Remote Sens 23:443–460CrossRefGoogle Scholar
  53. Tyrväinen L, Silvennoinen H, Kolehmainen O (2003) Ecological and aesthetic values in urban forest management. Urban For Urban Green 1:135–149CrossRefGoogle Scholar
  54. Wasser L, Day R, Chasmer L, Taylor A (2013) Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions. PLoS One 8(1):e54776CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Forest and Wildlife EcologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Graduate School of GeographyClark UniversityWorcesterUSA

Personalised recommendations