Urban Ecosystems

, Volume 20, Issue 1, pp 15–35 | Cite as

Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies

Article

Abstract

There is no consensus on a comprehensive classification for green infrastructure (GI). This is a consequence of the diversity of disciplines, application contexts, methods, terminologies, purposes and valuation criteria for which a GI typology is required. The aim of this systematic literature review is to evaluate the existing evidence on how GI is being categorised and characterised worldwide. We reviewed a total of 85 studies from 15 countries that were analysed for contextual trends, methods, parameters and typologies. Results show that relevant literature lacks a common terminology and that a universal typology for all scenarios is impractical. Analysis reveals that GI can be organised into four main GI categories: (a) tree canopy, (b) green open spaces, (c) green roofs and (d) vertical greenery systems (facades/walls). Green open spaces and tree canopy attracted the attention of researchers due to their complexity, variability and important roles in GI planning. Evidence suggests that a ternary approach in terms of the functional (purpose, use, services), structural (morphology) and configurational (spatial arrangements) attributes of GI should be applied for a more comprehensive classification. Although this approximation is inherently generic, since it can be used across different research disciplines, it is also sufficiently specific to be implemented for individual scopes, scenarios and settings. Further research is needed to develop a typology capable of responding to particular research aims and performance analyses based upon the findings discussed in this paper.

Keywords

Urban greening Classification schemes Typologies Systematic review Ecosystem services Spatial scales 

References

  1. Abunnasr YF (2013) Climate change adaptation: a green infrastructure planning framework for resilient urban regions (PhD). University of Massachusetts AmherstGoogle Scholar
  2. Ahern J (1995) Greenways as a planning strategy. Landsc Urban Plan 33(1-3):131–155. doi:10.1016/0169-2046(95)02039-V CrossRefGoogle Scholar
  3. Ahern J (2007) Green infrastructure for cities: the spatial dimension. In: Novotny V, Brown P (eds) Cities of the future: towards integrated sustainable water and landscape management. IWA Publishing, LondonGoogle Scholar
  4. Aldous DE (2014) Australia’s national classification system for green open space. Australas Parks Leis 16(2):30–33Google Scholar
  5. Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data: geological survey professional paper 964Google Scholar
  6. Arlt G, Hennersdorf J, Lehmann I, Thinh NX (eds) (2005) IÖR-Schriften. Auswirkungen städtischer Nutzungsstrukturen auf Grünflächen und Grünvolumen. Impact of city’s structures of land use on green spaces and green volume, 47th edn. DresdenGoogle Scholar
  7. Bell S, Montarzino A, Travlou P (2007) Mapping research priorities for green and public urban space in the UK. Urban For Urban Green 6(2):103–115. doi:10.1016/j.ufug.2007.03.005 CrossRefGoogle Scholar
  8. Benedict MA, McMahon ET (2002) Green infrastructure: smart conservation for the 21st centuryGoogle Scholar
  9. Benedict MA, McMahon ET (2006) Green infrastructure: linking landscapes and communities. Island PressGoogle Scholar
  10. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010a) How effective is ‘greening’ of urban areas in reducing human exposure to ground level ozone concentrations, UV exposure and the ‘urban heat island effect’?: CEE review 08-004 (SR41). Environmental evidenceGoogle Scholar
  11. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010a) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97(3):147–155CrossRefGoogle Scholar
  12. Brady RF, Tobias T, Eagles PF, Ohrner R, Micak J, Veale B, Dorney RS (1979) A typology for the urban ecosystem and its relationship to larger biogeographical landscape units. Urban Ecol 4(1):11–28. doi:10.1016/0304-4009(79)90020-2 CrossRefGoogle Scholar
  13. Byrne J, Sipe N (2010) Green and open space planning for urban consolidation - a review of the literature and best practice (No. 11). BrisbaneGoogle Scholar
  14. Cadenasso ML, Pickett S, Schwarz K (2007) Spatial heterogeneity in urban ecosystems:: reconceptualizing land cover and a framework for classification. Front Ecol Environ 5(2):80–88Google Scholar
  15. Cadenasso ML, Pickett STA, McGrath B, Marshall V (2013) Ecological heterogeneity in urban ecosystems: reconceptualized land cover models as a bridge to urban design. In: Pickett S, Cadenasso ML, McGrath B (eds) Resilience in ecology and urban design. Linking theory and practice for sustainable cities. Springer, New YorkGoogle Scholar
  16. Cheltenham Borough Council (CBC) (2008) Green space audit-final report. Worcestershire, UKGoogle Scholar
  17. Christchurch City Council (CCC) (2010) Public open space strategy 2010-2040. New ZealandGoogle Scholar
  18. Cooper LM (2010) Network analysis in CEA, ecosystem services assessment and green space planning. Impact Assess Proj Apprais 28(4):269–278. doi:10.3152/146155110X12838715793048 CrossRefGoogle Scholar
  19. Coutts AM, Tapper NJ, Beringer J, Loughnan M, Demuzere M (2012) Watering our cities: the capacity for water sensitive urban design to support urban cooling and improve human thermal comfort in the Australian context. Prog Phys Geogr 37(1):2–28. doi:10.1177/0309133312461032 CrossRefGoogle Scholar
  20. Coutts AM, White EC, Tapper NJ, Beringer J, Livesley SJ (2015) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor Appl Climatol. doi:10.1007/s00704-015-1409-y Google Scholar
  21. Davies C, MacFarlane R, McGloin, C, Roe M (2006) Green infrastructure planning guide. North-East community forests, Durham, Marea Britanie. Retrieved from https://www.scribd.com/doc/55042694/Green-Infrastructure-Guide-Project-Davies-Et-Al-2006. Accessed Monday, March 30, 2015
  22. Davis M (2010) Green infrastructure In-Depht case analysis.: theme 7: mapping for planning. Task 4.1: In-depth case analysis – green infrastructure implementation and efficiency – ENV.B.2./SER/2010/0059Google Scholar
  23. Davis M, Ramírez F, Vallejo AL (2015) Vertical gardens as swamp coolers. Proc Eng 118:145–159. doi:10.1016/j.proeng.2015.08.413 CrossRefGoogle Scholar
  24. de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408. doi:10.1016/S0921-8009(02)00089-7 CrossRefGoogle Scholar
  25. DEFRA (2008) Case study to develop tools and methodologies to deliver an ecosystem-based approach - Thames gateway green grids. Research Project Final Report. UKGoogle Scholar
  26. Department for Transport, Local Government and the Regions (DTLR) (2002) Green spaces, better places: final report of the urban green spaces taskforce. LondonGoogle Scholar
  27. Di Gregorio A, Jansen LJM (eds) (1998) Land Cover Classification System (LCCS): classification concepts and user manual. Food and Agriculture Organization (FAO), RomeGoogle Scholar
  28. Dobbs C, Escobedo FJ, Zipperer WC (2011) A framework for developing urban forest ecosystem services and goods indicators. Landsc Urban Plan 99(3–4):196–206. doi:10.1016/j.landurbplan.2010.11.004 CrossRefGoogle Scholar
  29. Dunnett N, Kingsbury N (2004) Planting green roofs and living walls. Timber Press, PortlandGoogle Scholar
  30. Dunnett N, Swanwick C, Woolley H (2002) Improving urban parks, play areas, and open space.: urban research report. LondonGoogle Scholar
  31. East Midlands Development Agency (EMDA) (2010) A guide and toolkit. Green Infrastructure.: playind an important role in achieving sustainable economic growth. NottinghamGoogle Scholar
  32. Ely M, Pitman S (2014) Green Infrastructure: LIFE support for human habitats. The compelling evidence for incorporating nature into urban environments: Green Infrastructure Evidence Base 2014. Green Infrastructure Project, Botanic Gardens of South Australia. South AustraliaGoogle Scholar
  33. English Nature (2003) Providing accessible natural greenspaces in towns and cities: a practical guide to assessing the resources and implementing local standards for provision. UKGoogle Scholar
  34. European Environment Agency (EEA) (2011) Green infrastructure and territorial cohesion.: the concept of green infrastructure and its integration into policies using monitoring systems. EEA Technical report No. 18/2011Google Scholar
  35. Foster J, Lowe A. Winkelman S (2011) The value of green infrastructure for urban climate adaptationGoogle Scholar
  36. Francis RA, Lorimer J (2011) Urban reconciliation ecology: the potential of living roofs and walls. J Environ Manag 92(6):1429–1437. doi:10.1016/j.jenvman.2011.01.012 CrossRefGoogle Scholar
  37. Gill S, Handley J, Ennos A, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environment 33(1):115–133Google Scholar
  38. Hawken S, Metternicht G, Chang C, Liew S, Gupta A (eds) (2014) Remote sensing of urban ecological infrastructure in Desakota environments: A review of current approaches. : 35th Asian conference on remote sensing (ACRS 2014)Google Scholar
  39. Höfle B, Hollaus M (2010) Urban vegetation detection using high density full-waveform Airborne Lidar Data -: combination of object-based image and point cloud analysis, XXXVIII, Part 7B, 281–286Google Scholar
  40. Hunter A, Livesley SJ, Williams NSG (2012) Literature review. Responding to the urban heat island: a review of the potential of green infrastructure. Report funded by the Victorian Centre for Climate Change Adaptation (VCCCAR). Melbourne, AustraliaGoogle Scholar
  41. Hunter AM, Williams NS, Rayner JP, Aye L, Hes D, Livesley SJ (2014) Quantifying the thermal performance of green façades: a critical review. Ecol Eng 63:102–113. doi:10.1016/j.ecoleng.2013.12.021 CrossRefGoogle Scholar
  42. Jacobs B, Mikhailovich N, Delaney C (2014) Benchmarking Australia’s urban tree canopy: an i-Tree assessment.: Final Report. Prepared for Horticulture Australia Limited. SydneyGoogle Scholar
  43. Jim CY (1989) Tree-canopy characteristics and urban development in Hong Kong. Geogr Rev 79(2):210–225CrossRefGoogle Scholar
  44. Jim CY (2015) Greenwall classification and critical design-management assessments. Ecol Eng 77:348–362. doi:10.1016/j.ecoleng.2015.01.021 CrossRefGoogle Scholar
  45. Jim C, Chen SS (2003) Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing city, China. Landsc Urban Plan 65(3):95–116. doi:10.1016/S0169-2046(02)00244-X CrossRefGoogle Scholar
  46. Keeley M (2011) The green area ratio: an urban site sustainability metric. J Environ Plan Manag 54(7):937–958. doi:10.1080/09640568.2010.547681 CrossRefGoogle Scholar
  47. Khan KS, Kunz R, Kleijnen J, Antes G (2003) Systematic reviews to support evidence-based medicine. Royal Society of Medicine Press Ltd., LondonGoogle Scholar
  48. Kontoleon KJ, Eumorfopoulou EA (2010) The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Build Environ 45(5):1287–1303. doi:10.1016/j.buildenv.2009.11.013 CrossRefGoogle Scholar
  49. La Rosa D, Privitera R (2013) Characterization of non-urbanized areas for land-use planning of agricultural and green infrastructure in urban contexts. Landsc Urban Plan 109(1):94–106. doi:10.1016/j.landurbplan.2012.05.012 CrossRefGoogle Scholar
  50. Landscape Institute (2009) Green Infrastructure connected and multifunctional landscapes.: Position StatementGoogle Scholar
  51. Lehmann S (2014) Low carbon districts: mitigating the urban heat island with green roof infrastructure. City Cult Soc 5(1):1–8. doi:10.1016/j.ccs.2014.02.002 CrossRefGoogle Scholar
  52. Lehmann I, Mathey J, Rößler S, Bräuer A, Goldberg V (2014) Urban vegetation structure types as a methodological approach for identifying ecosystem services – Application to the analysis of micro-climatic effects. Ecol Indic 42:58–72. doi:10.1016/j.ecolind.2014.02.036 CrossRefGoogle Scholar
  53. Li F, Wang R, Paulussen J, Liu X (2005) Comprehensive concept planning of urban greening based on ecological principles: a case study in Beijing, China. Landsc Urban Plan 72(4):325–336. doi:10.1016/j.landurbplan.2004.04.002 CrossRefGoogle Scholar
  54. Liu T, Yang X (2013) Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis. Remote Sens Environ 133:251–264. doi:10.1016/j.rse.2013.02.020 CrossRefGoogle Scholar
  55. Liu K, Gao W, Gu X, Gao Z (eds) (2013) The relation between the urban heat island effect and the underlying surface LUCC of meteorological stations. Source of the Document Proceedings of SPIE - The International Society for Optical Engineering 8869 - 88690RGoogle Scholar
  56. Llewelyn-Davies (2000) Urban design compendium 1. English Partnerships & The Housing Corporation, LondonGoogle Scholar
  57. Llewelyn-Davies Planning (1992) Open space planning in London. The Committee, London (UK)Google Scholar
  58. Mathey J, Rößler S, Lehmann I, Bräuer A (2010). Urban green spaces: potentials and constraints for urban adaptation to climate change. Resilient Cities, Local Sustainability Volume 1, 2011, pp 479–485, Volume 1, 479Google Scholar
  59. Mathey J, Rößler S, Lehmann I, Bräuer A, Goldberg V, Kurbjuhn C, Westbeld A (eds) (2011) Naturschutz und Biologische Vielfalt Vol. 111. Noch wärmer, noch trockener? Stadtnatur und Freiraumstrukturenim Klimawandel.: Even warmer, even drier? Urban nature and green spacedevelopment under climate change. Bundesamt für Naturschutz (Bfn. Ed.), Bonn-Bad GodesbergGoogle Scholar
  60. Mazza L, Bennett G, Nocker L, de Gantioler S, Losarcos L, Margerison C, van Diggelen R (2011) Green infrastructure implementation and efficiency: final report for the European commission, DG environment on contract ENV.B.2/SER/2010/0059. Institute for European Environmental Policy, Brussels and LondonGoogle Scholar
  61. Mell IC (2008) Green infrastructure: concepts and planning. FORUM E journal - Newcastle University (8) 69–80Google Scholar
  62. Mell IC (2010) Green infrastructure: concepts, perceptions and its use in spatial planning (PhD). Newcastle University, UKGoogle Scholar
  63. Mell IC (2014) Aligning fragmented planning structures through a green infrastructure approach to urban development in the UK and USA. Urban For Urban Green 13(4):612–620. doi:10.1016/j.ufug.2014.07.007 CrossRefGoogle Scholar
  64. Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC, Friday, June 12, 2015 Google Scholar
  65. Naumann S, Davis M, Kaphengst T, Pieterse M, Rayment M (2011) Design, implementation and cost elements of green infrastructure projects.: final report to the European Commission, DG Environment. Contract no. 070307/2010/577182/ETU/F.1Google Scholar
  66. Norton B, Coutts A, Livesley S, Williams N (2013) Technical report. Decision principles for the selection and placement of Green infrastructure: technical reportGoogle Scholar
  67. Norton BA, Coutts AM, Livesley SJ, Harris RJ, Hunter AM, Williams NS (2015) Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc Urban Plan 134:127–138. doi:10.1016/j.landurbplan.2014.10.018 CrossRefGoogle Scholar
  68. Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57(10)Google Scholar
  69. Ochoa JM (1999) La vegetacion como instrumento para el control microclimatico (PhD). Universitat Politecnica de Catalunya, BarcelonaGoogle Scholar
  70. Office of Environment and Heritage (OEH) (2015) Urban green cover. Technical guidelinesGoogle Scholar
  71. Office of the Deputy Prime Minister. (2002a) Assessing needs and opportunities a companion guide to PPG17Google Scholar
  72. Office of the Deputy Prime Minister (2002b) Planning policy guidance 17: planning for open space, sport and recreationGoogle Scholar
  73. Oke TR (2006) Towards better scientific communication in urban climate. Theor Appl Climatol 84(1–3):179–190. doi:10.1007/s00704-005-0153-0 CrossRefGoogle Scholar
  74. Oke TR (ed) (2009) The need to establish protocols in urban heat island work. 8th symposium on urban environmentsGoogle Scholar
  75. Oke TR, Crowther JM, McNaughton KG, Monteith JL, Gardiner B (1989) The micrometeorology of the urban forest. Philos Trans R Soc Lond B 324:335–349, Tuesday, August 25, 2015 CrossRefGoogle Scholar
  76. Ottelé M, Perini K, Fraaij A, Haas EM, Raiteri R (2011) Comparative life cycle analysis for green façades and living wall systems. Energy Build 43(12):3419–3429. doi:10.1016/j.enbuild.2011.09.010 CrossRefGoogle Scholar
  77. Panduro TE, Veie KL (2013) Classification and valuation of urban green spaces—A hedonic house price valuation. Landsc Urban Plan 120:119–128. doi:10.1016/j.landurbplan.2013.08.009 CrossRefGoogle Scholar
  78. Pauleit S, Duhme F (2000) Assessing the environmental performance of land cover types for urban planning. Landsc Urban Plan 52(1):1–20. doi:10.1016/S0169-2046(00)00109-2 CrossRefGoogle Scholar
  79. Pauleit S, Slinn P, Handley J, Lindley S (2003) Promoting the natural greenstructure of towns and cities: English nature’s accessible natural greenspace standards model. Built Environ 29(2):157–170CrossRefGoogle Scholar
  80. Pérez G, Rincón L, Vila A, González JM, Cabeza LF (2011a) Behaviour of green facades in Mediterranean continental climate. Energy Convers Manag 52(4):1861–1867. doi:10.1016/j.enconman.2010.11.008 CrossRefGoogle Scholar
  81. Pérez G, Rincón L, Vila A, González JM, Cabeza LF (2011b) Green vertical systems for buildings as passive systems for energy savings. Appl Energy 88(12):4854–4859. doi:10.1016/j.apenergy.2011.06.032 CrossRefGoogle Scholar
  82. Pérez G, Coma J, Martorell I, Cabeza LF (2014) Vertical Greenery Systems (VGS) for energy saving in buildings: a review. Renew Sust Energ Rev 39:139–165. doi:10.1016/j.rser.2014.07.055 CrossRefGoogle Scholar
  83. Perini K, Ottelé M, Fraaij A, Haas EM, Raiteri R (2011) Vertical greening systems and the effect on air flow and temperature on the building envelope. Build Environ 46(11):2287–2294. doi:10.1016/j.buildenv.2011.05.009 CrossRefGoogle Scholar
  84. Peters EB., Hiller RV, McFadden JP (2011) Seasonal contributions of vegetation types to suburban evapotranspiration. J Geophys Res 116(G1). doi:10.1029/2010JG001463
  85. Pickering C, Byrne J (2013) The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High Educ Res Dev 33(3):534–548. doi:10.1080/07294360.2013.841651 CrossRefGoogle Scholar
  86. Pullin AS, Stewart GB (2006) Guidelines for systematic review in conservation and environmental management. Conserv Biol : J Soc Conserv Biol 20(6):1647–1656. doi:10.1111/j.1523-1739.2006.00485.x CrossRefGoogle Scholar
  87. Rupprecht CD, Byrne JA, Garden JG, Hero J-M (2015) Informal urban green space: a trilingual systematic review of its role for biodiversity and trends in the literature. Urban For Urban Green 14(4):883–908. doi:10.1016/j.ufug.2015.08.009 CrossRefGoogle Scholar
  88. Schilling J, Logan J (2008) Greening the rust belt: a green infrastructure model for right sizing America’s shrinking cities. J Am Plan Assoc 74(4):451–466CrossRefGoogle Scholar
  89. Sheate W, Eales R, Day E, Baker J, Murdoch A, Hill C,. . . Karpouzoglou T (2012) Spatial representation and specification of Ecosystem Services: A Methodology using land use/land cover data and stakeholder Engagement. J Environ Assess Policy Manag 14(01), 1250001. doi:10.1142/S1464333212500019
  90. Stewart ID, Oke TR (eds) (2009) Newly developed “thermal climate zones” for defining and measuring urban heat island “magnitude” in the canopy layer. T.R. Oke Symposium & 8th Symposium on Urban Environment. USA January 11–15Google Scholar
  91. Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900. doi:10.1175/BAMS-D-11-00019.1 CrossRefGoogle Scholar
  92. Susorova I (2015) Green facades and living walls: vertical vegetation as a construction material to reduce building cooling loads. In: Pacheco-Torgal F, Labrincha JA, Cabeza LF, Granqvist C-G (eds) Eco-efficient materials for mitigating building cooling needs: design, properties and applications. Woodhead Publishing, p 127–153. Thursday, March 31, 2016Google Scholar
  93. TEP (2005) East Midlands green infrastructure scoping study. Final report: prepared for East Midlands regional assembly and partnersGoogle Scholar
  94. The Mersey Forest (2010) Liverpool green infrastructure strategy: technical document. Version 1.0. Liverpool, UKGoogle Scholar
  95. The Mersey Forest (2011) The value of mapping green infrastructure. LondonGoogle Scholar
  96. The Scottish Government (TSG) (2008) Planning advice note: PAN 65 planning and open Space. UKGoogle Scholar
  97. Tooke TR, Coops NC, Goodwin NR, Voogt JA (2009) Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens Environ 113(2):398–407. doi:10.1016/j.rse.2008.10.005 CrossRefGoogle Scholar
  98. Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc Urban Plan 81(3):167–178. doi:10.1016/j.landurbplan.2007.02.001 CrossRefGoogle Scholar
  99. United States Geological Survey (USGS) (1992) Multi-resolution land characteristics. Retrieved from http://www.mrlc.gov/. Accessed Sunday, December 20, 2015
  100. United States Geological Survey (USGS) (2003) National land cover classification. Retrieved from http://landcover.usgs.gov/usgslandcover.php. Accessed Sunday, December 20, 2015
  101. Victorial Environmental Assessment Council (VEAC) (2011) Metropolitan Melbourne investigation final report. East Melbourne, VicGoogle Scholar
  102. Wang X-J (2001) Type, quantity and layout of urban peripheral green space. J For Res 12(1):67–70CrossRefGoogle Scholar
  103. Williams N, Rayner JP, Raynor KJ (2010) Green roofs for a wide brown land: opportunities and barriers for rooftop greening in Australia. Urban For Urban Green 9(3):245–251. doi:10.1016/j.ufug.2010.01.005 CrossRefGoogle Scholar
  104. Williamson KS (2003) Growing with green infrastructureGoogle Scholar
  105. Wilmers F (1988) Green for melioration of urban climate. Energy Build 11(1–3):289–299. doi:10.1016/0378-7788(88)90045-X CrossRefGoogle Scholar
  106. Wong KK (2011) Urban open space system in northern Kowloon Peninsula: an emerging green infrastructure network in Hong Kong. Asian Geogr 27(1–2):13–28. doi:10.1080/10225706.2010.9684150 Google Scholar
  107. Wong N-H, Chen Y (2010) The role of urban Greenery. In: Ng E (ed) High-density cities. The Role of Urban Greenery, p 227–262Google Scholar
  108. Wong N-H, Kwang Tan AY, Chen Y, Sekar K, Tan PY,. . . Wong NC (2010) Thermal evaluation of vertical greenery systems for building walls. Build Environ 45(3), 663–672. doi:10.1016/j.buildenv.2009.08.005
  109. Woolley H (2006) Urban open spaces. Spon Press & Taylor and Francis Group, London & New YorkGoogle Scholar
  110. Young R, Zanders J, Lieberknecht K, Fassman-Beck E (2014) A comprehensive typology for mainstreaming urban green infrastructure. J Hydrol 519:2571–2583. doi:10.1016/j.jhydrol.2014.05.048 CrossRefGoogle Scholar
  111. Zhou W, Troy A (2009) Development of an object-based framework for classifying and inventorying human-dominated forest ecosystems. Int J Remote Sens 30(23):6343–6360. doi:10.1080/01431160902849503 CrossRefGoogle Scholar
  112. Zhou W, Cadenasso M, Schwarz K, Pickett S (2014) Quantifying spatial heterogeneity in urban landscapes: integrating visual interpretation and object-based classification. Remote Sens 6(4):3369–3386. doi:10.3390/rs6043369 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Built Environment - UNSW; Cooperative Research Centre for Low Carbon Living (CRC-LCL)SydneyAustralia
  2. 2.Faculty of Built Environment - UNSWSydneyAustralia

Personalised recommendations