Advertisement

Urban Ecosystems

, Volume 19, Issue 3, pp 1149–1161 | Cite as

Food in a row: urban trees offer valuable floral resources to pollinating insects

  • Laurent Somme
  • Laura Moquet
  • Muriel Quinet
  • Maryse Vanderplanck
  • Denis Michez
  • Georges Lognay
  • Anne-Laure Jacquemart
Article

Abstract

Urbanization affects the availability and diversity of floral resources (pollen and/or nectar) for wild pollinating insects. For example, urban green areas are characterized by an abundance of ornamental plant species. Increasingly, trees are planted to improve the aesthetics of urban streets and parks. These urban trees might offer important floral resources to pollinating insects. To examine the suitability of urban trees as resources for pollinating insects, we investigated the chemical composition of pollen and nectar as well as the amount of nectar produced by the nine major insect-pollinated tree species planted in cities of Western Europe, namely Acer pseudoplatanus, Aesculus carnea, A. hippocastanum, Robinia pseudoacacia, Tilia cordata, T. x euchlora, T. x europaea, T. platyphyllos and T. tomentosa. The analyses revealed that globally the Tilia trees provide pollen with lower contents of polypeptides, amino acids and phytosterols compared with the other species. Urban tree flowers offer abundant nectar with relatively high sugar contents (0.16–1.28 mg/flower); sucrose was the predominant sugar in all nectars. The investigated tree species could therefore be considered in future city plantings.

Keywords

Urban biodiversity Pollen Nectar Insect visitors Bees 

Notes

Acknowledgments

We thank D. Geerinck, V. Decoux (Bruxelles Mobilité), S. Kempeneers (Bruxelles Environnement) and M. Wollast (ApisBruoc’Sella) for site identification. We are grateful to N. Roger, C. Buyens, and I. Van de Vreken for technical assistance, L. C. Kouonon for field assistance, R. Wattiez (Proteomics and Biochemistry of Proteins, University of Mons) and Bernard Wathelet (Industrial Biological Chemistry Unit, University of Liège) for granting access to their lab, and M. Warnier (Centre Apicole de Recherche et d’Information, Louvain-la-Neuve) for nectar analyses. We thank A. Valster and N. R. Hoffmann (Plant Editors cooperative) for language improvement, and two anonymous reviewers for their valuable comments on a previous version of the manuscript. MV holds a “Chargé de Recherches” fellowship (Fonds National de la Recherche Scientifique, Belgium). This work was supported by Innoviris, Brussels (contract BB2B 2012-2-15, post-doc grant for L.C. Kouonon).

Supplementary material

11252_2016_555_MOESM1_ESM.docx (19 kb)
Online Resource 1 (DOCX 18 kb)
11252_2016_555_MOESM2_ESM.docx (16 kb)
Online Resource 2 (DOCX 16 kb)

References

  1. Acar C, Acar H, Eroğlu E (2007) Evaluation of ornamental plant resources to urban biodiversity and cultural changing: A case study of residential landscapes in Trabzon city (Turkey). Build Environ 42:218–229CrossRefGoogle Scholar
  2. Ahrné K, Bengtsson J, Elmqvist T (2009) Bumble bees (Bombus spp) along a gradient of increasing urbanization. PLoS One 4:e5574CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alton K, Ratnieks F (2013) To bee or not to bee. Biologist 60:12–15Google Scholar
  4. Anderson GJ (1976) The pollination biology of Tilia. Am J Bot 63:1203–1212CrossRefGoogle Scholar
  5. Baldock KCR, Goddard MA, Hicks DM, et al. (2015) Where is the UK’s pollinator biodiversity? the importance of urban areas for flower-visiting insects. Proc R Soc London B: Biol Sci 282:2014–2849CrossRefGoogle Scholar
  6. Banaszak-Cibicka W, Żmihorski M (2012) Wild bees along an urban gradient: winners and losers. J Insect Conserv 16:331–343CrossRefGoogle Scholar
  7. Bates AJ, Sadler JP, Fairbrass AJ, Falk SJ, Hale JD, Matthews TJ (2011) Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS One 6:e23459CrossRefPubMedPubMedCentralGoogle Scholar
  8. Batra SWT (1985) Red maple (Acer rubrum L.), an important early spring food resource for honey bees and other insects. J Kansas Entomol Soc 58:169–172Google Scholar
  9. Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MA, Morton RD, Smart SM, Memmott JL (2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530:85–88. doi: 10.1038/nature16532 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bruxelles Environnement (2003) Rapport de synthèse sur l’état de l’environnement en Région de Bruxelles-Capitale - Edition 2002, BruxellesGoogle Scholar
  11. Burke JM, Wyatt R, dePamphilis CW, Arnold ML (2000) Nectar characteristics of interspecific hybrids and their parents in Aesculus (Hippocastanaceae) and Iris (Iridaceae). J Torrey Bot Soc 127:200–206CrossRefGoogle Scholar
  12. Cawoy V, Jonard M, Mayer C, Jacquemart A-L (2012) Do abundance and proximity of the alien Impatiens glandulifera affect pollination and reproductive success of two sympatric co-flowering native species? J Poll Ecol 10:130–139Google Scholar
  13. Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013) Biological flora of the British Isles: Robinia pseudoacacia. J Ecol 101:1623–1640CrossRefGoogle Scholar
  14. Cnaani J, Thomson JD, Papaj DR (2006) Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112:278–285CrossRefGoogle Scholar
  15. Collins J, Kinzig A, Grimm N, Fagan W, Hope D, Wu J, Borer E (2000) A new urban ecology. Am Sci 88:416–425CrossRefGoogle Scholar
  16. Comba L, Corbet SA, Barron A, Bird A, Collinge S, Miyazaki N, Powell M (1999a) Garden flowers: insect visits and the floral reward of horticulturally-modified variants. Ann Bot 83:73–86CrossRefGoogle Scholar
  17. Comba L, Corbet SA, Hunt L, Warren B (1999b) Flowers, nectar and insect visits: evaluating British plant species for pollinator-friendly gardens. Ann Bot 83:369–383CrossRefGoogle Scholar
  18. Corbet SA (2003) Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie 34:1–10CrossRefGoogle Scholar
  19. Corbet SA, Bee J, Dasmahapatra K, Gale S, Gorringe E, La Ferla B, Moorhouse T, Trevail A, Van Bergen Y, Vorontsova M (2001) Native or exotic? Double or single? evaluating plants for pollinator-friendly gardens. Ann Bot 87:219–232CrossRefGoogle Scholar
  20. Couvillon MJ, Schürch R, Ratnieks FLW (2014) Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS One 9:e93495CrossRefPubMedPubMedCentralGoogle Scholar
  21. Crane E (1977) Dead bees under lime trees. Bee World 58:129–130CrossRefGoogle Scholar
  22. Dafni A, Kevan PG, Husband BC (eds) (2005) Practical pollination biology. Enviroquest, Cambridge, Ontario, CanadaGoogle Scholar
  23. Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18CrossRefGoogle Scholar
  24. Dicks LV, Baude M, Roberts SPM, Phillips J, Green M, Carvell C (2015) How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecol Entomol 40:22–35CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eckhardt M, Haider M, Dorn S, Müller A (2014) Pollen mixing in pollen generalist solitary bees: a possible strategy to complement or mitigate unfavourable pollen properties? J Anim Ecol 83:588–597CrossRefPubMedGoogle Scholar
  26. Everaars J, Strohbach MW, Gruber B, Dormann CF (2011) Microsite conditions dominate habitat selection of the red mason bee (Osmia bicornis, Hymenoptera: Megachilidae) in an urban environment: A case study from Leipzig, Germany. Landsc Urban Plan 103:15–23CrossRefGoogle Scholar
  27. Frankie GW, Thorp RW, Schindler M, Hernandez J, Ertter B, Rizzardi M (2005) Ecological patterns of bees and their host ornamental flowers in two Northern California cities. J Kansas Entomol Soc 78:227–246CrossRefGoogle Scholar
  28. Garbuzov M, Ratnieks FLW (2014) Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct Ecol 28:364–374CrossRefGoogle Scholar
  29. Génissel A, Aupinel P, Bressac C, Tasei JN, Chevrier C (2002) Influence of pollen origin on performance of Bombus terrestris micro-colonies. Entomol Exper Applic 104:329–336CrossRefGoogle Scholar
  30. Gonzalez-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Pl Signal Behav 4:809–813CrossRefGoogle Scholar
  31. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19CrossRefGoogle Scholar
  32. Goulson D (2009) Bumble bees: behaviour, ecology, and conservation, 2nd edn. Oxford University Press, USAGoogle Scholar
  33. Goulson D, Darvill B (2004) Niche overlap and diet breadth in bumblebees. are rare species more specialized in their choice of flowers? Apidologie 35:55–63CrossRefGoogle Scholar
  34. Goulson D, Hughes W, Derwent L, Stout J (2002) Colony growth of the bumblebee, Bombus terrestris, in improved and conventional agricultural and suburban habitats. Oecologia 130:267–273CrossRefGoogle Scholar
  35. Goulson D, Sparrow KR (2008) Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J Insect Conserv 13:177–181CrossRefGoogle Scholar
  36. Gunnarsson B, Federsel LM (2014) Bumble bees in the city: abundance, species richness and diversity in two urban habitats. J Insect Conserv 18:1185–1191CrossRefGoogle Scholar
  37. Haaland C, Gyllin M (2010) Butterflies and bumblebees in greenways and sown wildflower strips in Southern Sweden. J Insect Conserv 14:125–132CrossRefGoogle Scholar
  38. Hanley ME, Awbi AJ, Franco M (2014) Going native? flower use by bumblebees in English urban gardens. Ann Bot 113:799–806CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hanley ME, Franco M, Pichon S, Darvill B, Goulson D (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct Ecol 22:592–598CrossRefGoogle Scholar
  40. Harmon-Threatt AN, Kremen C (2015) Bumble bees selectively use native and exotic species to maintain nutritional intake across highly variable and invaded local floral resource pools. Ecol Entomol 40:471–478CrossRefGoogle Scholar
  41. Hernandez J, Frankie G, Thorp R (2009) Ecology of urban bees: a review of current knowledge and directions for future study. Cities and the Environment 2:2–15CrossRefGoogle Scholar
  42. Hunter MR, Hunter MD (2008) Designing for conservation of insects in the built environment. Insect Conserv Div 1:189–196Google Scholar
  43. Janson EM, Grebenok RJ, Behmer ST, Abbot P (2009) Same host-plant, different sterols: variation in sterol metabolism in an insect herbivore community. J Chem Ecol 35:1309–1319CrossRefPubMedGoogle Scholar
  44. Kaluza BF, Wallace H, Heard TA, Klein AM, Leonhardt SD (2016) Urban gardens promote bee foraging over natural habitats and plantations. Ecol Evol 6:1304–1316Google Scholar
  45. Käpylä M (1978) Amount and type of nectar sugar in some wild flowers in Finland. Ann Bot Fenn 15:85–88Google Scholar
  46. Kevan PG (1990) How large bees, Bombus and Xylocopa (Apoidea Hymenoptera) forage on trees: optimality and patterns of movement in temperate and tropical climates. Ethol Ecol Evol 2:233–242CrossRefGoogle Scholar
  47. Kitaoka TK, Nieh JC (2009) Bumble bee pollen foraging regulation: role of pollen quality, storage levels, and odor. Behav Ecol Sociobiol 63:625–625CrossRefGoogle Scholar
  48. Krasenbrink A, Popp M, Denker B (1994) Nektarzusammensetzung von Tilia tomentosa (Moench) und anderen Lindenarten/−hybriden. Z. Okologie und Naturschutz 3:237–242Google Scholar
  49. Lambinon J, Verloove F (2012) Nouvelle Flore de Belgique, du Grand-Duché de Luxembourg, du Nord de la France et des régions voisines, 6th edn. Meise, BelgiumGoogle Scholar
  50. Macior LW (1978) Pollination ecology of vernal Angiosperms. Oikos 30:452–460CrossRefGoogle Scholar
  51. Matteson KC, Langellotto GA (2010) Determinates of inner city butterfly and bee species richness. Urban Ecosyst 13:333–347CrossRefGoogle Scholar
  52. McFrederick QS, Le Buhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129:372–382CrossRefGoogle Scholar
  53. McKinney ML (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  54. Moquet L, Mayer C, Michez D, Wathelet B, Jacquemart AL (2015) Early spring floral foraging resources for pollinators in wet heathlands in Belgium. J Insect Conserv 19:837–848CrossRefGoogle Scholar
  55. Naef R, Jaquier A, Velluz A, Bachofen B (2004) Fron the linden flower to linden honey - volatile constituents of linden nectar, and extract of bee-stomach and ripe honey. Chem Biodivers 1:1870–1879CrossRefPubMedGoogle Scholar
  56. Nicolson SW (2011) Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two. Afr Zool 46:197–204CrossRefGoogle Scholar
  57. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013). Vegan: community ecology package. R package version 2.0–9.http://CRAN.R-project.org/package=vegan. Accessed: 2014 July 20
  58. Pauleit S, Jones N, Garcia-Martin G, Garcia-Valdecantos JL, Rivière LM, Vidal-Beaudet L, Bodson M, Randrup T (2002) Tree establishment practice in towns and cities – results from a European survey. Urban For Urban Green 1:83–96CrossRefGoogle Scholar
  59. Pawelek J, Frankie G, Thorp R, Przybylski M (2009) Modification of a community garden to attract native bee pollinators in urban San Luis Obispo, California. Cities and the Environment 2:7–21CrossRefGoogle Scholar
  60. Pawlikowski T (2010) Pollination activity of bees (Apoidea: Apiformes) visiting the flowers of Tilia cordata Mill. and Tilia tomentosa Moench in an urban environment. J Apic Sci 54:73–79Google Scholar
  61. Percival MS (1961) Types of nectar in Angiosperms. New Phytol 60:235–281CrossRefGoogle Scholar
  62. Pigott C (2012) Lime-trees and basswoods: a biological monograph of the genus Tilia. Cambridge Univ Press, Cambridge, UKCrossRefGoogle Scholar
  63. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010a) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  64. Potts SG, Roberts S, Dean R, Marris G, Brown M, Jones R, Neumann P, Settele J (2010b) Declines of managed honey bees and beekeepers in Europe. J Apic Res 49:134–136CrossRefGoogle Scholar
  65. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  66. Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209CrossRefGoogle Scholar
  67. Salisbury A, Armitage J, Bostock H, Perry J, Tatchell M, Thompson K (2015) Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): should we plant native or exotic species? J Appl Ecol 52:1156–1164CrossRefGoogle Scholar
  68. Sedivy C, Müller A, Dorn S (2011) Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Funct Ecol 25:718–725CrossRefGoogle Scholar
  69. Singaravelan N, Inbar M, Ne’eman G, Distl M, Wink M (2006) The effects of nectar-nicotine on colony fitness of caged honeybees. J Chem Ecol 32:49–59CrossRefPubMedGoogle Scholar
  70. Sirohi MH, Jackson J, Edwards M, Ollerton J (2015) Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). J Insect Conserv 19:487–500CrossRefGoogle Scholar
  71. Sjöman H, Gunnarsson A, Pauleit S, Bothmer R (2012a) Selection approach of urban trees for inner-city environments: learning from nature. Arboricult Urban For 38:194–204Google Scholar
  72. Sjöman H, Östberg J, Bühler O (2012b) Diversity and distribution of the urban tree population in ten major Nordic cities. Urban For Urban Green 11:31–39CrossRefGoogle Scholar
  73. Somme L, Vanderplanck M, Michez D, Lombaerde I, Moerman R, Wathelet B, Wattiez R, Lognay G, Jacquemart AL (2015) Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46:92–106CrossRefGoogle Scholar
  74. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542CrossRefPubMedGoogle Scholar
  75. Tasei JN, Aupinel P (2008) Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumble bee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39:397–409CrossRefGoogle Scholar
  76. Tedeschini E, Rodriguez-Rajo FJ, Caramiello R, Jato V, Frenguelli G (2006) The influence of climate changes in Platanus spp. pollination in Spain and Italy. Grana 45:222–229CrossRefGoogle Scholar
  77. Thomson D (2004) Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85:458–470CrossRefGoogle Scholar
  78. Vanderplanck M, Leroy B, Wathelet B, Wattiez R, Michez D (2014a) Standardized protocol to evaluate pollen polypeptides as bee food source. Apidologie 45:192–204CrossRefGoogle Scholar
  79. Vanderplanck M, Michez D, Vancraenenbroeck S, Lognay G (2011) Micro-quantitative method for analysis of sterol levels in honeybees and their pollen loads. Anal Lett 44:1807–1820CrossRefGoogle Scholar
  80. Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, Michez D (2014b) How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS One 9:e86209CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vaudo AD, Tooker JF, Grozinger CM, Patch HM (2015) Bee nutrition and floral resource restoration. Curr Opin Insect Sci 10:133–141CrossRefGoogle Scholar
  82. Vervoort A, Cawoy V, Jacquemart AL (2011) Comparative reproductive biology in co-occurring invasive and native Impatiens species. Int J Plant Sci 172:366–377CrossRefGoogle Scholar
  83. Villette C, Berna A, Compagnon V, Schaller H (2015) Plant sterol diversity in pollen from Angiosperms. Lipids 50:749–760CrossRefPubMedGoogle Scholar
  84. Waser NM, Ollerton J (2006) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, USAGoogle Scholar
  85. Weiner CN, Hilpert A, Werner M, Linsenmair KE, Blüthgen N (2010) Pollen amino acids and flower specialisation in solitary bees. Apidologie 41:476–487CrossRefGoogle Scholar
  86. Weryszko-Chmielewska E, Tietze M, Michońska M (2012) Ecological features of the flowers of Aesculus hippocastanum L. and characteristics of Aesculus L. pollen seasons under the conditions of Central-Eastern Poland. Acta Agrobot 65:61–68CrossRefGoogle Scholar
  87. Williams IH, Carreck N, Little DJ (1993) Nectar sources for honey bees and the movement of honey bee colonies for crop pollination and honey production in England. Bee World 74:160–175CrossRefGoogle Scholar
  88. Winfree R, Aguilar R, Vázquez DP, Le Buhn G, Aizen MA (2009) A Meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076CrossRefPubMedGoogle Scholar
  89. Wojcik VA, Frankie GW, Thorp RW, Hernandez JL (2008) Seasonality in bees and their floral resource plants at a constructed urban bee habitat in Berkeley, California. J Kansas Entomol Soc 81:15–28CrossRefGoogle Scholar
  90. Wykes GR (1952) An investigation of the sugars present in the nectar of flowers of various species. New Phytol 51:210–215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Laurent Somme
    • 1
  • Laura Moquet
    • 1
  • Muriel Quinet
    • 1
  • Maryse Vanderplanck
    • 2
  • Denis Michez
    • 2
  • Georges Lognay
    • 3
  • Anne-Laure Jacquemart
    • 1
  1. 1.Earth and Life Institute, Research Group Genetics, Reproduction, PopulationsUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Laboratory of Zoology, Research Institute of BiosciencesUniversité de MonsMonsBelgium
  3. 3.Laboratory of Analytical Chemistry, Gembloux Agro-Bio TechUniversité de LiègeGemblouxBelgium

Personalised recommendations