Urban Ecosystems

, Volume 19, Issue 3, pp 1083–1101 | Cite as

Contrasting soil nitrogen dynamics across a montane meadow and urban lawn in a semi-arid watershed

  • Steven J. HallEmail author
  • Michelle A. Baker
  • Scott B. Jones
  • John M. Stark
  • David R. Bowling


Urbanization substantially increases nitrogen (N) inputs and hydrologic losses relative to wildland ecosystems, although the fate of N additions to lawns and remnant grasslands remains contested. In montane semi-arid ecosystems, N cycling is often closely coupled to snowmelt (the dominant period of infiltration) and snow cover, which impact soil temperature and moisture. Here, we compared soil N dynamics between a fertilized and irrigated urban lawn and nearby riparian meadow in Salt Lake City, Utah during a snow manipulation experiment. Snow removal increased freeze/thaw events but did not affect N pools, microbial biomass, denitrification potential, or soil oxygen (O2). Mineral N was similar between sites despite lawn fertilization, but dissolved organic N (DON) was four-fold greater (2.1 ± 0.1 mg N l−1) in lawn soil water. Infiltration was lower in the lawn subsoil, and leaching losses (modeled with Hydrus) were small at both sites (< 2 kg N ha−1 y−1) despite substantial lawn fertilization. Lawn soil O2 fluctuated between 20.9 and 1.6 % following snowmelt and irrigation, but remained near 20 % in the meadow; the lawn had more reducing microsites as indicated by iron speciation. Post-snowmelt potential denitrification was six-fold greater in the lawn than the meadow. Lawns can potentially provide hotspots of denitrification in a semi-arid landscape that exceed some natural riparian ecosystems, whereas DON may represent an increasingly important form of N loss from lawns.


Denitrification Dissolved organic nitrogen Lawn Nitrogen leaching Snowmelt Soil oxygen 



We thank Sue Pope, Lorenzo Lopez, and Marty Huebner from the University of Utah landscape staff for supporting our work on campus. We gratefully acknowledge field and lab assistance from Jillian Turner, Simone Jackson, Kendalynn Morris, Dave Eiriksson, Suvankar Chakraborty, Harrison Quinn, and Caitlin Szymanski. This research was supported by NSF EPSCoR grant IIA 1208732 awarded to Utah State University as part of the State of Utah Research Infrastructure Improvement Award. Any opinions, findings, and conclusions or recommendations expressed are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Supplementary material

11252_2016_538_MOESM1_ESM.docx (487 kb)
Supplemental Fig. 1 (DOCX 487 kb)
11252_2016_538_MOESM2_ESM.docx (574 kb)
Supplemental Fig. 2 (DOCX 574 kb)
11252_2016_538_MOESM3_ESM.docx (360 kb)
Supplemental Fig. 3 (DOCX 360 kb)
11252_2016_538_MOESM5_ESM.docx (546 kb)
Supplemental Fig. 4 (DOCX 546 kb)


  1. Baker LA, Hope D, Xu Y, et al. (2001) Nitrogen balance for the central Arizona-Phoenix (CAP) ecosystem. Ecosystems 4:582–602. doi: 10.1007/s10021-001-0031-2 CrossRefGoogle Scholar
  2. Barton L, Colmer TD (2006) Irrigation and fertiliser strategies for minimising nitrogen leaching from turfgrass. Agric Water Manag 80:160–175. doi: 10.1016/j.agwat.2005.07.011 CrossRefGoogle Scholar
  3. Bernhardt ES, Band LE, Walsh CJ, Berke PE (2008) Understanding, managing, and minimizing urban impacts on surface water nitrogen loading. Ann N Y Acad Sci 1134:61–96. doi: 10.1196/annals.1439.014 PubMedCrossRefGoogle Scholar
  4. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  5. Brooks PD, Campbell DH, Tonnessen KA, Heuer K (1999) Natural variability in N export from headwater catchments: snow cover controls on ecosystem N retention. Hydrol Process 13:2191–2201. doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2191::AID-HYP849>3.0.CO;2-L CrossRefGoogle Scholar
  6. Brooks PD, Grogan P, Templer PH, et al. (2011) Carbon and nitrogen cycling in snow-covered environments. Geogr Compass 5:682–699. doi: 10.1111/j.1749-8198.2011.00420.x CrossRefGoogle Scholar
  7. Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: Environmental controls and relationship to inter-system C and N fluxes. Oecologia 110:403–413. doi: 10.1007/PL00008814 Google Scholar
  8. Brooks PD, Williams MW (1999) Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrol Process 13:2177–2190. doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2177::AID-HYP850>3.0.CO;2-V CrossRefGoogle Scholar
  9. Burgin AJ, Groffman PM, Lewis DN (2010) Factors regulating denitrification in a riparian wetland. Soil Sci Soc Am J 74:1826. doi: 10.2136/sssaj2009.0463 CrossRefGoogle Scholar
  10. Campbell JL, Socci AM, Templer PH (2014) Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest. Glob Chang Biol 20:2663–2673. doi: 10.1111/gcb.12532 PubMedCrossRefGoogle Scholar
  11. Covino TP, McGlynn BL (2007) Stream gains and losses across a mountain-to-valley transition: Impacts on watershed hydrology and stream water chemistry. Water Resour Res 43:W10431. doi: 10.1029/2006WR005544 CrossRefGoogle Scholar
  12. Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. Nature 350:335–337. doi: 10.1038/350335a0 CrossRefGoogle Scholar
  13. Durán J, Rodríguez A, Morse JL, Groffman PM (2013) Winter climate change effects on soil C and N cycles in urban grasslands. Glob Chang Biol 19:2826–2837. doi: 10.1111/gcb.12238 PubMedCrossRefGoogle Scholar
  14. Ehleringer JR, Arnow LA, Arnow T, et al. (1992) Red Butte Canyon Research Natural Area: history, flora, geology, climate, and ecology. Gt Basin Nat 52:95–121Google Scholar
  15. Fenn ME, Haeuber R, Tonnesen GS, et al. (2003) Nitrogen emissions, deposition, and monitoring in the western United States. Bioscience 53:391–403. doi: 10.1641/0006-3568(2003)053[0391:NEDAMI]2.0.CO;2 CrossRefGoogle Scholar
  16. Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805. doi: 10.2136/sssaj2003.7980 CrossRefGoogle Scholar
  17. Fitzhugh RD, Driscoll CT, Groffman PM, et al. (2001) Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry 56:215–238. doi: 10.1023/A:1013076609950 CrossRefGoogle Scholar
  18. Frank KW, O’Reilly KM, Crum JR, Calhoun RN (2006) The fate of nitrogen applied to a mature Kentucky bluegrass turf. Crop Sci 46:209. doi: 10.2135/cropsci2005.04-0039 CrossRefGoogle Scholar
  19. Groffman PM, Boulware NJ, Zipperer WC, et al. (2002) Soil nitrogen cycle processes in urban riparian zones. Environ Sci Technol 36:4547–4552. doi: 10.1021/es020649z PubMedCrossRefGoogle Scholar
  20. Groffman PM, Driscoll CT, Fahey TJ, et al. (2001) Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56:191–213. doi: 10.1023/A:1013024603959 CrossRefGoogle Scholar
  21. Groffman PM, Hardy JP, Fashu-Kanu S, et al. (2010) Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape. Biogeochemistry 102:223–238. doi: 10.1007/s10533-010-9436-3 CrossRefGoogle Scholar
  22. Groffman PM, Hardy JP, Fisk MC, et al. (2009a) Climate variation and soil carbon and nitrogen cycling processes in a northern hardwood forest. Ecosystems 12:927–943. doi: 10.1007/s10021-009-9268-y CrossRefGoogle Scholar
  23. Groffman PM, Holland EA, Myrold DD, et al. (1999) Denitrification. In: Robertson GP, Bledsoe CS, Coleman DC, Sollins P (eds) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, New York, pp. 272–290Google Scholar
  24. Groffman PM, Law NL, Belt KT, et al. (2004) Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7:393–403. doi: 10.1007/s10021-003-0039-x Google Scholar
  25. Groffman PM, Williams CO, Pouyat RV, et al. (2009b) Nitrate leaching and nitrous oxide flux in urban forests and grasslands. J Environ Qual 38:1848. doi: 10.2134/jeq2008.0521 PubMedCrossRefGoogle Scholar
  26. Hale RL, Turnbull L, Earl S, et al. (2014) Sources and transport of nitrogen in arid urban watersheds. Environ Sci Technol 48:6211–6219. doi: 10.1021/es501039t PubMedCrossRefGoogle Scholar
  27. Hall SJ, McDowell WH, Silver WL (2013) When wet gets wetter: Decoupling of moisture, redox biogeochemistry, and greenhouse gas fluxes in a humid tropical forest soil. Ecosystems 16:576–589. doi: 10.1007/s10021-012-9631-2 CrossRefGoogle Scholar
  28. Hall SJ, Weintraub SR, Eiriksson D, et al. (2016) Stream nitrogen inputs reflect groundwater across a snowmelt-dominated montane to urban watershed. Environmental Science & Technology In press. doi: 10.1021/acs.est.5b04805 Google Scholar
  29. Janke BD, Finlay JC, Hobbie SE, et al. (2014) Contrasting influences of stormflow and baseflow pathways on nitrogen and phosphorus export from an urban watershed. Biogeochemistry 121:209–228. doi: 10.1007/s10533-013-9926-1 CrossRefGoogle Scholar
  30. Kaushal SS, Groffman PM, Band LE, et al. (2011) Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ Sci Technol 45:8225–8232. doi: 10.1021/es200779e PubMedCrossRefGoogle Scholar
  31. Kaye JP, McCulley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11:575–587. doi: 10.1111/j.1365-2486.2005.00921.x CrossRefGoogle Scholar
  32. MacDonald GM (2010) Water, climate change, and sustainability in the southwest. Proc Natl Acad Sci 107:21256–21262. doi: 10.1073/pnas.0909651107 PubMedPubMedCentralCrossRefGoogle Scholar
  33. McClain M, Boyer E, D CL, et al. (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312. doi: 10.1007/s10021-003-0161-9 CrossRefGoogle Scholar
  34. Morse JL, Durán J, Groffman PM (2015) Soil denitrification fluxes in a northern hardwood forest: the importance of snowmelt and implications for ecosystem N budgets. Ecosystems 18:520–532. doi: 10.1007/s10021-015-9844-2 CrossRefGoogle Scholar
  35. Moyes AB, Bowling DR (2013) Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow. Biogeochemistry 113:683–697. doi: 10.1007/s10533-012-9797-x CrossRefGoogle Scholar
  36. Neff JC, Chapin FS, Vitousek PM (2003) Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ 1:205–211. doi: 10.1890/1540-9295(2003)001[0205:BITCDO]2.0.CO;2 CrossRefGoogle Scholar
  37. Pickett STA, Cadenasso ML, Grove JM, et al. (2011) Urban ecological systems: Scientific foundations and a decade of progress. J Environ Manag 92:331–362. doi: 10.1016/j.jenvman.2010.08.022 CrossRefGoogle Scholar
  38. Pinheiro J, Bates D, DebRoy S, et al (2014) nlme: linear and nonlinear mixed effects models.Google Scholar
  39. Raciti SM, Burgin AJ, Groffman PM, et al. (2011b) Denitrification in suburban lawn soils. J Environ Qual 40:1932. doi: 10.2134/jeq2011.0107 PubMedCrossRefGoogle Scholar
  40. Raciti SM, Groffman PM, Fahey TJ (2008) Nitrogen retention in urban lawns and forests. Ecol Appl 18:1615–1626. doi: 10.1890/07-1062.1 PubMedCrossRefGoogle Scholar
  41. Raciti SM, Groffman PM, Jenkins JC, et al. (2011a) Accumulation of carbon and nitrogen in residential soils with different land-use histories. Ecosystems 14:287–297. doi: 10.1007/s10021-010-9409-3 CrossRefGoogle Scholar
  42. Raciti SM, Groffman PM, Jenkins JC, et al. (2011c) Nitrate production and availability in residential soils. Ecol Appl 21:2357–2366. doi: 10.1890/10-2009.1 PubMedCrossRefGoogle Scholar
  43. Roach WJ, Grimm NB (2011) Denitrification mitigates N flux through the stream–floodplain complex of a desert city. Ecol Appl 21:2618–2636. doi: 10.1890/10-1613.1 PubMedCrossRefGoogle Scholar
  44. Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176. doi: 10.1016/S0022-1694(01)00466-8 CrossRefGoogle Scholar
  45. Schaetzl RJ, Anderson S (2005) Soils: Genesis and Geomorphology. Cambridge University PressGoogle Scholar
  46. Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–1552. doi: 10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2 CrossRefGoogle Scholar
  47. Simunek J, Sejna M, Saito H, et al. (2013) The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media. University of California Riverside, Riverside, CA, USA, Department of Environmental SciencesGoogle Scholar
  48. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241:155–176. doi: 10.1023/A:1016125726789 CrossRefGoogle Scholar
  49. Solomon DK, Cerling TE (1987) The annual carbon dioxide cycle in a montane soil: observations, modeling, and implications for weathering. Water Resour Res 23:2257–2265. doi: 10.1029/WR023i012p02257 CrossRefGoogle Scholar
  50. Wang W, Haver D, Pataki DE (2014) Nitrogen budgets of urban lawns under three different management regimes in southern California. Biogeochemistry 121:127–148. doi: 10.1007/s10533-013-9942-1 CrossRefGoogle Scholar
  51. Zak DR, Groffman PM, Pregitzer KS, et al. (1990) The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests. Ecology 71:651–656. doi: 10.2307/1940319 CrossRefGoogle Scholar
  52. Zhu W-X, Hope D, Gries C, Grimm NB (2006) Soil characteristics and the accumulation of inorganic nitrogen in an arid urban ecosystem. Ecosystems 9:711–724. doi: 10.1007/s10021-006-0078-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Steven J. Hall
    • 1
    • 2
    Email author
  • Michelle A. Baker
    • 3
  • Scott B. Jones
    • 4
  • John M. Stark
    • 3
  • David R. Bowling
    • 1
    • 5
  1. 1.Global Change and Sustainability CenterUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesUSA
  3. 3.Department of Biology and the Ecology CenterUtah State UniversityLoganUSA
  4. 4.Department of Plants, Soils, and ClimateUtah State UniversityLoganUSA
  5. 5.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations