Urban Ecosystems

, Volume 19, Issue 3, pp 1231–1249 | Cite as

Drivers of biodiversity patterns in parks of a growing South American megacity

  • Leonie Katharina Fischer
  • Verena Rodorff
  • Moritz von der Lippe
  • Ingo Kowarik


How urban habitats contribute to biodiversity conservation is a key challenge in a rapidly urbanising world. Urban parks can provide important habitats for native species, but previous studies are geographically biased; fast growing megacities, in particular in South America, are clearly understudied. To assess habitat functions and underlying drivers in parks of Santiago de Chile, we analysed the assemblages of wild growing plant species in two ubiquitous park habitat types (grasslands, wooded areas) in 15 parks (150 plots) along an urban-rural gradient. We first used linear contrasts to compare species richness, beta diversity and the proportion of introduced species. We then tested for the explanatory value of environmental variables operating at different spatial scales (plot, park, urban matrix). Unlike in most previous studies, biodiversity patterns were not related to the position of the parks on the urban-rural gradient. Introduced species, mostly from Europe, generally dominated both habitat types (>90 %). Socio-economic (population growth or density), but not spatial, variables were retained in most models. Maintenance intensity was most influential in predicting species assemblages, complemented by park age in wooded areas. A high proportion of European grassland species indicates a trend of homogenisation in park grassland at a cross-continental scale. We conclude that habitat functions of urban parks for native species that have been mainly demonstrated for Europe cannot be generalised to South American megacities. This highlights the need for innovative and locally appropriate conservation approaches (e.g., re-introduction of native species) to foster biodiversity functions in urban parks of South American megacities.


Alien plant species Biotic homogenisation Green space management Lawn Plant invasion Urbanisation 



We thank Sonia Reyes Paecke, Luis Meza (Pontificia Universidad Católica de Chile, Instituto de Estudios Urbanos y Territoriales) and Marianne Katunaric (CONAMA Chile) for cooperation, help with species identification and provision of GIS data. The study was funded by the German Academic Exchange Service DAAD, the International Office of the TU Berlin, and the German Research Foundation (DFG) as part of the graduate research training programme ‘Urban Ecology Berlin’ (GRK 780/III). We thank Kelaine Ravdin for improving our English and two anonymous reviewers for helpful comments.

Supplementary material

11252_2016_537_MOESM1_ESM.docx (57 kb)
ESM 1 (DOCX 56.7 kb)


  1. Abendroth S, Kowarik I, Müller N, von der Lippe M (2012) The green colonial heritage: Woody plants in parks of Bandung, Indonesia. Landsc Urban Plan 106:12–22CrossRefGoogle Scholar
  2. Aguayo MI, Wiegand T, Azocar GD, Wiegand K, Vega CE (2007) Revealing the driving forces of mid-cities urban growth patterns using spatial modeling: a case study of Los Angeles, Chile. Ecol Soc 12:13Google Scholar
  3. Al-Shehbaz IA (1993) Lepidium tayloriae (Brassicaceae), a new species from Chile. Novon 3:93–95CrossRefGoogle Scholar
  4. Arroyo MTK, Marquet P, Marticorena C, Simonetti JA, Cavieres L, Squeo FA, Rozzi R, Massardo F (2006) El Hotspot chileno, prioridad mundial para la conservación. In: Saball P, Arroyo MTK, Castilla JC, Estades C, Guevara JMLD, Larraín S, Moreno C, Rivas F, Rovira J, Sánchez A, Sierralta L (eds) Biodiversidad de Chile. Patrimonio y Desafíos. Comisión Nacional del Medio Ambiente, Santiago de Chile, pp. 94–99Google Scholar
  5. Auffret AG, Cousins SAO (2013) Humans as long-distance dispersers of rural plant communities. PLoS One 8:e62763PubMedPubMedCentralCrossRefGoogle Scholar
  6. Burke MJW, Grime JP (1996) An experimental study of plant community invasibility. Ecology 77:776–790CrossRefGoogle Scholar
  7. Castro SA, Espinosa C, Figueroa JA (2014) Two haplotypes of Capsella bursa-pastoris (Brassicaceae) in Continental Chile support multiple introduction. Gayana Bot 71:216–221CrossRefGoogle Scholar
  8. Celesti-Grapow L, Capotorti G, Del Vico E, Lattanzi E, Tilia A, Blasi C (2013) The vascular flora of Rome. Plant Biol 147:1059–1087Google Scholar
  9. Cilliers SS, Müller N, Drewes E (2004) Overview on urban nature conservation: situation in the western-grassland biome of South Africa. Urban For Urban Green 3:49–62CrossRefGoogle Scholar
  10. Cook EM, Hall SJ, Larson KL (2012) Residential landscapes as social-ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst 15:19–52CrossRefGoogle Scholar
  11. Cornelis J, Hermy M (2004) Biodiversity relationships in urban and suburban parks in Flanders. Landsc Urban Plan 69:385–401CrossRefGoogle Scholar
  12. Crawley MJ (2007) The R Book. John Wiley & Sons, Ltd, ChichesterCrossRefGoogle Scholar
  13. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  14. DeCandido R (2004) Recent changes in plant species diversity in urban Pelham Bay Park, 1947-1998. Biol Conserv 120:129–136CrossRefGoogle Scholar
  15. DeCandido R, Calvanese N, Alvarez RV, Brown MI, Nelson TM (2007) The naturally occurring historical and extant flora of Central Park, New York City, New York 1857-2007. J Torrey Bot Soc 134:552–569CrossRefGoogle Scholar
  16. de la Maza CL, Hernández J, Bown H, Rodríguez M, Escobedo F (2002) Vegetation diversity in the Santiago de Chile urban ecosystem. Arbitr J 26:347–357Google Scholar
  17. De Mattos CA (2004) Santiago de Chile: Metamorfosis bajo un nuevo impulso de modernización capitalista. In: De Mattos CA, Ducci ME, Rodríguez A, Yánez Warner G (eds) Santiago en la globalización ¿una nueva ciudad? Instituto de Estudios Urbanos y Territoriales, Santiago, pp. 42–43Google Scholar
  18. Ellis EC (2015) Ecology in an anthropogenic biosphere. Ecol Monogr. doi: 10.1890/14-2274.1 Google Scholar
  19. Faeth SH, Bang C, Saari S (2011) Urban biodiversity: patterns and mechanisms. Ann N Y Acad Sci 1223:69–81PubMedCrossRefGoogle Scholar
  20. Fischer LK, von der Lippe M, Kowarik I (2013a) Urban land use types contribute to grassland conservation: the example of Berlin. Urban For Urban Green 12:263–272CrossRefGoogle Scholar
  21. Fischer LK, von der Lippe M, Rillig MC, Kowarik I (2013b) Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol Conserv 159:119–126CrossRefGoogle Scholar
  22. Fuentes N, Pauchard A, Sanchez P, Esquivel J, Marticorena A (2013) A new comprehensive database of alien plant species in Chile based on herbarium records. Biol Invasions 15:847–858CrossRefGoogle Scholar
  23. Fuentes N, Saldaña A, Kühn I, Klotz S (2014) Climatic and socio-economic factors determine the level of invasion by alien plants in Chile. Plant Ecol Divers 30:609–628Google Scholar
  24. Gavier-Pizarro GI, Radeloff VC, Stewart SI, Huebner CD, Keuler NS (2010) Rural housing is related to plant invasions in forests of southern Wisconsin, USA. Landsc Ecol 25:1505–1518CrossRefGoogle Scholar
  25. GORE-RM (2009) Políticas Áeras verdes de la ciudad de Santiago. Cartografía actualizada. Gobierno Reginal de Santigo Región Metropolitana, Santiago de ChileGoogle Scholar
  26. Güneralp B, Seto KC (2013) Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ Res Lett 8:014025CrossRefGoogle Scholar
  27. Haase D, Kabisch N, Haase A (2013) Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate. PLoS One 8:e66531PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hahs AK, McDonnell MJ, McCarthy MA, Vesk PA, Corlett RT, Norton BA, Clemants SE, Duncan RP, Thompson K, Schwartz MW, Williams NSG (2009) A global synthesis of plant extinction rates in urban areas. Ecol Lett 12:1165–1173PubMedCrossRefGoogle Scholar
  29. Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PH, Jones A (2005) Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecol Appl 15:1893–1905CrossRefGoogle Scholar
  30. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion - implications for conservation. Conserv Biol 6:324–337CrossRefGoogle Scholar
  31. Hoffmann A (1998a) El Árbol urbano en Chile, 3rd edn. Ediciones Fundación Claudio Gay, Santiago, ChileGoogle Scholar
  32. Hoffmann A (1998b) Flora silvestre de Chile, zona central, 4th edn. Ediciones Fundación Claudio Gay, Santiago, ChileGoogle Scholar
  33. Ignatieva M (2011) Plant material for urban landscapes in the era of globalization: roots, challenges and innovative solutions. In: Richter M, Weiland U (eds) Applied urban ecology: a global framework. John Wiley & Sons, Ltd, Chichester, UK, pp. 139–151CrossRefGoogle Scholar
  34. Ignatieva M, Ahrné K, Wissman J, Eriksson T, Tidåker P, Hedblom M, Kätterer T, Marstorp H, Berg P, Eriksson T, Bengtsson J (2015) Lawn as a cultural and ecological phenomenon: a conceptual framework for transdisciplinary research. Urban For Urban Green 14(2):383–387CrossRefGoogle Scholar
  35. Ignatieva, ME, Stewart, GH, Meurk, CD (2008) Low Impact Urban Design and Development (LIUDD): matching urban design and urban ecology. Landscape Review 12: 61-73INE (2014) Censo 2012. Población, País y Regiones: Actualización Población 2002–2012 y Proyecciones 2013–2020. Instituto Nacional de Estadisticas, Santiago, ChileGoogle Scholar
  36. INE (2002) Censo 2002. Chile, proyecciones de poblacion al 30 de junio (1990-2020). Instituto Nacional de Estadisticas, Santiago, ChileGoogle Scholar
  37. INE (2014) Censo 2012. Población, País y Regiones: Actualización Población 2002-2012 y Proyecciones 2013-2020. Instituto Nacional de Estadisticas, Santiago, ChileGoogle Scholar
  38. Jäger EJ (2011) Rothmaler - Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. Spektrum Akademischer Verlag, MünchenGoogle Scholar
  39. Kirkpatrick JB (2004) Vegetation change in an urban grassy woodland 1974–2000. Aust J Bot 52:597–608CrossRefGoogle Scholar
  40. Knapp S, Kühn I, Mosbrugger V, Klotz S (2008a) Do protected areas in urban and rural landscapes differ in species diversity? Biodivers Conserv 17:1595–1612CrossRefGoogle Scholar
  41. Knapp S, Kühn I, Wittig R, Ozinga WA, Poschlod P, Klotz S (2008b) Urbanization causes shifts in species' trait state frequencies. Preslia 80:375–388Google Scholar
  42. Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983PubMedCrossRefGoogle Scholar
  43. Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764Google Scholar
  44. Kümmerling M, Müller N (2012) The relationship between landscape design style and the conservation value of parks: a case study of a historical park in Weimar, Germany. Landsc Urban Plan 107:111–117CrossRefGoogle Scholar
  45. Laborde M (2007) Parques de Santiago. Editorial Catalonia, Santiago de ChileGoogle Scholar
  46. LaPaix R, Freedman B (2010) Vegetation structure and composition within urban parks of Halifax Regional Municipality, Nova Scotia, Canada. Landsc Urban Plan 98:124–135CrossRefGoogle Scholar
  47. Li W, Ouyang Z, Meng X, Wang X (2006) Plant species composition in relation to green cover configuration and function of urban parks in Beijing, China. Ecol Res 21:221–237CrossRefGoogle Scholar
  48. Loeb RE (2006) A comparative flora of large urban parks: intraurban and interurban similarity in the megalopolis of the northeastern United States. J Torrey Bot Soc 133:601–625CrossRefGoogle Scholar
  49. Loeb RE (2010) Diversity gained, diversity lost: long-term changes in woody plants in Central Park, New York City and Fairmount Park, Philadelphia. Stud Hist Gard Des L 30:124–151Google Scholar
  50. Luck GW (2007) A review of the relationships between human population density and biodiversity. Biol Rev 82:607–645PubMedCrossRefGoogle Scholar
  51. Lundholm JT, Richardson PJ (2010) Habitat analogues for reconciliation ecology in urban and industrial environments. J Appl Ecol 47:966–975CrossRefGoogle Scholar
  52. McDonald RI, Kareiva P, Forman RT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv 141:1695–1703CrossRefGoogle Scholar
  53. McDonald RI, Marcotullio PJ, Güneralp B (2013) Urbanization and global trends in biodiversity and ecosystem services. In: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (eds) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht, pp. 31–52CrossRefGoogle Scholar
  54. McDonnell M, Hahs A (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landsc Ecol 23:1143–1155CrossRefGoogle Scholar
  55. McDonnell MJ, Hahs AK, Pickett STA (2012) Exposing an urban ecology straw man: critique of Ramalho and Hobbs. Trends Ecol Evol 27:255–256PubMedCrossRefGoogle Scholar
  56. McIntyre NE, Knowles-Yanez K, Hope D (2000) Urban ecology as an interdisciplinary field: differences in the use of "urban" between the social and natural sciences. Urban Ecosyst 4:5–24CrossRefGoogle Scholar
  57. McKinney M (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  58. McKinney M (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890CrossRefGoogle Scholar
  59. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends. Island Press, WashingtonGoogle Scholar
  60. Nagendra H, Gopal D (2011) Tree diversity, distribution, history and change in urban parks: studies in Bangalore, India. Urban Ecosyst 14:211–223CrossRefGoogle Scholar
  61. Nielsen AB, van den Bosch M, Maruthaveeran S, Konijnendijk van den Bosch C (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327CrossRefGoogle Scholar
  62. Niemelä J (2014) Ecology of urban green spaces: the way forward in answering major research questions. Landsc Urban Plan 125:298–303CrossRefGoogle Scholar
  63. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: Community Ecology Package. R package version 2.0-0.
  64. Pauchard A, Aguayo M, Pena E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepcion, Chile). Biol Conserv 127:272–281CrossRefGoogle Scholar
  65. Pauchard, A, Barbosa, O (2013) Regional assessment of Latin America: rapid urban development and social economic inequity threaten biodiversity hotspots In: Elmqvist, T, Fragkias, M, Goodness, J, Güneralp, B, Marcotullio, PJ, McDonald, RI, Parnell, S, Schewenius, M, Sendstad, M, Seto, KC, Wilkinson C (eds) Urbanization, biodiversity and ecosystem services: Challenges and opportunities. Springer, Dordrecht, pp 589–608Google Scholar
  66. Politi Bertoncini A, Machon N, Pavoine S, Muratet A (2012) Local gardening practices shape urban lawn floristic communities. Landsc Urban Plan 105:53–61CrossRefGoogle Scholar
  67. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  68. Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trends Ecol Evol 27:179–188PubMedCrossRefGoogle Scholar
  69. Rojas C, Pino J, Basnou C, Vivanco M (2013) Assessing land-use and -cover changes in relation to geographic factors and urban planning in the metropolitan area of Concepción (Chile). Implications for biodiversity conservation. Appl Geogr 39:93–103CrossRefGoogle Scholar
  70. SAF (2006) Orthophotos of the Metropolitan Region of Santiago de Chile, scale 1:20.000. Servicio Aerofotogramétrico, SantiagoGoogle Scholar
  71. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  72. Schmeil O, Fitschen J (2009) Flora von Deutschland und angrenzender Länder. Quelle & Meyer Verlag, WiebelsheimGoogle Scholar
  73. Schmidt KJ, Poppendieck HH, Jensen K (2014) Effects of urban structure on plant species richness in a large European city. Urban Ecosyst 17:427–444CrossRefGoogle Scholar
  74. Shwartz A, Turbé A, Julliard R, Simon L, Prévot A-C (2014) Outstanding challenges for urban conservation research and action. Sci Technol 28:39–49Google Scholar
  75. Singh RB (2015) Urban development challenges, risks and resilience in asian mega cities. In: Singh RB (ed) Advances in geographical and environmental sciences. Springer, JapanGoogle Scholar
  76. Stewart GH, Ignatieva ME, Meurk CD, Buckley H, Horne B, Braddick T (2009) URban Biotopes of Aotearoa New Zealand (URBANZ) (I): composition and diversity of temperate urban lawns in Christchurch. Urban Ecosyst 12:233–248CrossRefGoogle Scholar
  77. Sushinsky JR, Rhodes JR, Possingham HP, Gill TK, Fuller RA (2013) How should we grow cities to minimize their biodiversity impacts? Glob Chang Biol 19:401–410PubMedCrossRefGoogle Scholar
  78. Thompson K, Hodgson JG, Smith RM, Warren PH, Gaston KJ (2004) Urban domestic gardens (III): composition and diversity of lawn floras. J Veg Sci 15:373–378CrossRefGoogle Scholar
  79. Tomasetto F, Duncan RP, Hulme PE (2013) Environmental gradients shift the direction of the relationship between native and alien plant species richness. Divers Distrib 19:49–59CrossRefGoogle Scholar
  80. UN-Habitat (2009) Planning Sustainable Cities — Global Report on Human Settlements 2009. EarthscanGoogle Scholar
  81. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  82. von der Lippe M, Kowarik I (2012) Interactions between propagule pressure and seed traits shape human-mediated seed dispersal along roads. Perspect Plant Ecol 14:123–130CrossRefGoogle Scholar
  83. Wang HF, MacGregor-Fors I, Lopez-Pujol J (2012) Warm-temperate, immense, and sprawling: plant diversity drivers in urban Beijing, China. Plant Ecol 213:967–992CrossRefGoogle Scholar
  84. Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10PubMedCrossRefGoogle Scholar
  85. Wichmann MC, Alexander MJ, Soons MB, Galsworthy S, Dunne L, Gould R, Fairfax C, Niggemann M, Hails RS, Bullock JM (2009) Human-mediated dispersal of seeds over long distances. P Roy Soc B-Biol Sci 276:523–532CrossRefGoogle Scholar
  86. Wilhelm M, Andres F (1998) Parkrasen und Parkwiesen in Zürich. In: Schmidt E, Sigel B (eds) Kowarik, I. Naturschutz und Denkmalpflege. vdf Hochschulverlag, Zürich, pp. 221–227Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Leonie Katharina Fischer
    • 1
    • 2
  • Verena Rodorff
    • 1
  • Moritz von der Lippe
    • 1
    • 2
  • Ingo Kowarik
    • 1
    • 2
  1. 1.Department of Ecology, Ecosystem Science/Plant EcologyTechnische Universität BerlinBerlinGermany
  2. 2.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany

Personalised recommendations