Advertisement

Urban Ecosystems

, Volume 19, Issue 2, pp 749–762 | Cite as

Establishing turf grass increases soil greenhouse gas emissions in peri-urban environments

  • Lona van Delden
  • Eloise Larsen
  • David Rowlings
  • Clemens Scheer
  • Peter Grace
Article

Abstract

Urbanization is becoming increasingly important in terms of climate change and ecosystem functionality worldwide. We are only beginning to understand how the processes of urbanization influence ecosystem dynamics and how peri-urban environments contribute to climate change. Brisbane in South East Queensland (SEQ) currently has the most extensive urban sprawl of all Australian cities. This leads to substantial land use changes in urban and peri-urban environments and the subsequent gaseous emissions from soils are to date neglected for IPCC climate change estimations. This research examines how land use change effects methane (CH4) and nitrous oxide (N2O) fluxes from peri-urban soils and consequently influences the Global Warming Potential (GWP) of rural ecosystems in agricultural use undergoing urbanization. Therefore, manual and fully automated static chamber measurements determined soil gas fluxes over a full year and an intensive sampling campaign of 80 days after land use change. Turf grass, as the major peri-urban land cover, increased the GWP by 415 kg CO2-e ha−1 over the first 80 days after conversion from a well-established pasture. This results principally from increased daily average N2O emissions of 0.5 g N2O ha−1 d−1 from the pasture to 18.3 g N2O ha−1 d−1 from the turf grass due to fertilizer application during conversion. Compared to the native dry sclerophyll eucalypt forest, turf grass establishment increases the GWP by another 30 kg CO2-e ha−1. The results presented in this study clearly indicate the substantial impact of urbanization on soil-atmosphere gas exchange in form of non-CO2 greenhouse gas emissions particularly after turf grass establishment.

Keywords

Urbanization Land use change Turf grass Greenhouse gas emissions Global warming potential 

References

  1. ABARES. (2010). Land use and land management information for Australia: workplan of the Australian collaborative land use and management program (ACLUMP), edited by Australian bureau of agricultural and resource economics and sciences. Canberra.Google Scholar
  2. ABS. (2012). Edited by Australian bureau of statistics. Canberra.Google Scholar
  3. ABS. (2015). 3218.0 - regional population growth, Australia, 2013-14, edited by Australian Bureau of Statistics. Canberra.Google Scholar
  4. AGO.(2010). National inventory report 2008: national greenhouse account, Australian Greenhouse Office, Commonwealth of Australia, Canberra.Google Scholar
  5. Barton L, Colmer TD (2011) Granular wetting agents ameliorate water repellency in turfgrass of contrasting soil organic matter content. Plant Soil 348(1–2):411–424 <Go to ISI>://WOS:000295587700029. doi: 10.1007/s11104-011-0765-3 CrossRefGoogle Scholar
  6. Betts R (2007) Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B 59(3):602–615CrossRefGoogle Scholar
  7. BOM. (2015). Commonwealth bureau of meteorology, Australian Government.Google Scholar
  8. Breuer, Lutz, Hans Papen and Klaus Butterbach-Bahl. (2000). N2O emission from tropical forest soils of Australia. J Geophys Res: Atmos (19842012) 105 (D21): 26353–26367.Google Scholar
  9. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc London B: Biol Sci 368(1621):20130122CrossRefGoogle Scholar
  10. Byrne LB (2007) Habitat structure: a fundamental concept and framework for urban soil ecology. Urban Ecosyst 10(3):255–274CrossRefGoogle Scholar
  11. Carter, R. and E.G. Gregorich. (2007). Soil Sampling and Methods of Analysis, Second Edition: Canadian Society of Soil Science: Taylor & FrancisGoogle Scholar
  12. Commonwealth of Australia. (2013). State of Australian cities 2013, edited by Department for Infrastructure and Transport: Australian Government.Google Scholar
  13. Fest, Benedikt J., Stephen J. Livesley, Matthias Drösler, Eva van Gorsel and Stefan K. Arndt. (2009). Soil–atmosphere greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in south-eastern Australia. Agric For Meteorol 149 (3–4): 393–406. http://www.sciencedirect.com/science/article/pii/S0168192308002517. doi: 10.1016/j.agrformet.2008.09.007.
  14. Fest, Benedikt J., Stephen J. Livesley, Joseph C. von Fischer and Stefan K. Arndt. (2015). Repeated fuel reduction burns have little long-term impact on soil greenhouse gas exchange in a dry sclerophyll eucalypt forest. Agric For Meteorol 201: 17–25. http://www.sciencedirect.com/science/article/pii/S0168192314002743. doi: 10.1016/j.agrformet.2014.11.006.CrossRefGoogle Scholar
  15. Golubiewski NE (2006) Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s front range. Ecol Appl 16(2):555–571 <Go to ISI>://WOS:000237052200011. doi: 10.1890/1051-0761(2006)016[0555:uigcpe]2.0.co;2 CrossRefPubMedGoogle Scholar
  16. Grimm NB, Foster D, Peter G, Morgan Grove J, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6(5):264–272CrossRefGoogle Scholar
  17. Groffman PM, Pouyat RV (2009) Methane Uptake in Urban Forests and Lawns. Environ Sci Technol 43(14):5229–5235 <Go to ISI>://WOS:000268138000013. doi: 10.1021/es803720h CrossRefPubMedGoogle Scholar
  18. Grover SPP, Livesley SJ, Hutley LB, Jamali H, Fest B, Beringer J, Butterbach-Bahl K, Arndt SK (2012) Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosci 9(1):423–437 <Go to ISI>://WOS:000300229000029. doi: 10.5194/bg-9-423-2012 CrossRefGoogle Scholar
  19. Gu, Chuanhui, John Crane Ii, George Hornberger and Amanda Carrico. (2015). The effects of household management practices on the global warming potential of urban lawns. J Environ Manag 151: 233–242. http://www.sciencedirect.com/science/article/pii/S0301479715000092. doi: 10.1016/j.jenvman.2015.01.008.CrossRefGoogle Scholar
  20. Hall SJ, Huber D, Grimm NB (2008) Soil N2O and NO emissions from an arid, urban ecosystem. J Geophys Res Biogeosci 113(G1) <Go to ISI>://WOS:000253531900001. doi: 10.1029/2007jg000523
  21. Hutyra LR, Yoon B, Alberti M (2011) Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Glob Chang Biol 17(2):783–797 <Go to ISI>://WOS:000285878000012. doi: 10.1111/j.1365-2486.2010.02238.x CrossRefGoogle Scholar
  22. IPCC (2007) Climate Change 2007: The Physical Science Basis. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen ZL (eds) Climate Change 2007: The Physical Science Basis. Cambridge Univ Press, New York <Go to ISI>://WOS:000292238900014Google Scholar
  23. Isbell, Raymond. (2002). The Australian soil classification. Vol. 4: CSIRO publishing, Collingwood.Google Scholar
  24. Kaye JP, Burke IC, Mosier AR, Guerschman JP (2004) Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol Appl 14(4):975–981 <Go to ISI>://WOS:000223156600002. doi: 10.1890/03-5115 CrossRefGoogle Scholar
  25. Kaye JP, McCulley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11(4):575–587 <Go to ISI>://WOS:000228179500005. doi: 10.1111/j1365-2486.2005.00921.x CrossRefGoogle Scholar
  26. Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21(4):192–199CrossRefPubMedGoogle Scholar
  27. Kiese R, Butterbach-Bahl K (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol Biochem 34(7):975–987 <Go to ISI>://WOS:000176977600009. doi: 10.1016/s0038-0717(02)00031-7 CrossRefGoogle Scholar
  28. Knowles TA, Singh B (2003) Carbon storage in cotton soils of northern New South Wales. Australian. J Soil Res 41(5):889–903 <Go to ISI>://WOS:000185266100006. doi: 10.1071/sr02023 CrossRefGoogle Scholar
  29. Koerner BA, Klopatek JM (2010) Carbon fluxes and nitrogen availability along an urban-rural gradient in a desert landscape. Urban Ecosystems 13(1):1–21 <Go to ISI>://BIOABS:BACD201000151374. doi: 10.1007/s11252-009-0105-z CrossRefGoogle Scholar
  30. Livesley SJ, Kiese R, Miehle P, Weston CJ, Butterbach-Bahl K, Arndt SK (2009) Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Glob Chang Biol 15(2):425–440 <Go to ISI>://WOS:000262510500011. doi: 10.1111/j.1365-2486.2008.01759.x CrossRefGoogle Scholar
  31. Livesley SJ, Dougherty BJ, Smith AJ, Navaud D, Wylie LJ, Arndt SK (2010) Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in urban garden systems: impact of irrigation, fertiliser and mulch. Urban Ecosystems 13(3):273–293CrossRefGoogle Scholar
  32. Lorenz K, Lal R (2009) Biogeochemical C and N cycles in urban soils. Environ Int 35(1):1–8CrossRefPubMedGoogle Scholar
  33. Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36(3):426–438 <Go to ISI>://WOS:000231959000008. doi: 10.1007/s00267-004-0316-2 CrossRefGoogle Scholar
  34. Moreton Bay Regional Council. (2011). Community Profile; Samford Valley Area http://profile.id.com.au/Default.aspx?id=311&pg=101&gid=560&type=enumGoogle Scholar
  35. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52(2–3):225–248CrossRefGoogle Scholar
  36. Ng, BJL, LR Hutyra, H Nguyen, AR Cobb, FM Kai, C Harvey and L Gandois. (2015). Carbon fluxes from an urban tropical grassland. Environ Pollut 203:227–234. http://www.sciencedirect.com/science/article/pii/S0269749114002413. doi: 10.1016/j.envpol.2014.06.009
  37. Potere D, Schneider A (2007) A critical look at representations of urban areas in global maps. GeoJournal 69(1–2):55–80CrossRefGoogle Scholar
  38. Pouyat RV, Yesilonis ID, Golubiewski NE (2009) A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems 12(1):45–62 <Go to ISI>://BIOABS:BACD200900147772. doi: 10.1007/s11252-008-0059-6 CrossRefGoogle Scholar
  39. Raciti SM, Groffman PM, Jenkins JC, Pouyat RV, Fahey TJ, Pickett STA, Cadenasso ML (2011) Accumulation of carbon and nitrogen in residential soils with different land-use histories. Ecosystems 14(2):287–297 <Go to ISI>://WOS:000288172300009. doi: 10.1007/s10021-010-9409-3 CrossRefGoogle Scholar
  40. Rowlings DW, Grace PR, Kiese R, Weier KL (2012) Environmental factors controlling temporal and spatial variability in the soil-atmosphere exchange of CO2, CH4 and N2O from an Australian subtropical rainforest. Glob Chang Biol 18(2):726–738 <Go to ISI>://WOS:000299042500027. doi: 10.1111/j.1365-2486.2011.02563.x CrossRefGoogle Scholar
  41. Rowlings DW, Grace PR, Scheer C, Liu S (2015) Rainfall variability drives interannual variation in N 2 O emissions from a humid, subtropical pasture. Sci Total Environ 512:8–18CrossRefPubMedGoogle Scholar
  42. Scheer C, Wassmann R, Kienzler K, Ibragimov N, Eschanov R (2008) Nitrous oxide emissions from fertilized, irrigated cotton (< i > gossypium hirsutum</i > L.) in the Aral sea basin, Uzbekistan: influence of nitrogen applications and irrigation practices. Soil Biol Biochem 40(2):290–301CrossRefGoogle Scholar
  43. Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345(1–2):47–58 <Go to ISI>://WOS:000292999700005. doi: 10.1007/s11104-011-0759-1 CrossRefGoogle Scholar
  44. Scheer C, Grace PR, Rowlings DW, Payero J (2013) Soil N2O and CO2 emissions from cotton in Australia under varying irrigation management. Nutr Cycl Agroecosyst 95(1):43–56 <Go to ISI>://WOS:000314334300003. doi: 10.1007/s10705-012-9547-4 CrossRefGoogle Scholar
  45. Scheer, Clemens, David W. Rowlings, Mary Firrel, Peter Deuter, Stephen Morris and Peter R. Grace. (2014). Impact of nitrification inhibitor (DMPP) on soil nitrous oxide emissions from an intensive broccoli production system in sub-tropical Australia. Soil Biol Biochem 77 (0): 243–251. http://www.sciencedirect.com/science/article/pii/S0038071714002466. doi: 10.1016/j.soilbio.2014.07.006.CrossRefGoogle Scholar
  46. Stocker, Thomas F, Q Dahe, G.-K. Plattner, M Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. (2013). Climate change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Google Scholar
  47. Tratalos J, Fuller RA, Warren PH, Davies RG, Gaston KJ (2007) Urban form, biodiversity potential and ecosystem services. Landsc Urban Plan 83(4):308–317CrossRefGoogle Scholar
  48. Turf Australia. (2012). Newsletter 2012 https://www.turfaustralia.com.au/.Google Scholar
  49. United Nations. (2008). World urbanization prospects: The 2007 Revision. In United Nations (NY), edited by Economics and Social Affairs. United Nations (NY): United Nations Population DivisionGoogle Scholar
  50. United Nations. (2013). World population prospects: the 2012 revision, highlights ans advance tables”, edited by Economics and Social Affairs. United Nations (NY): United Nations Population DivisionGoogle Scholar
  51. United Nations Department of Economics and Social Affairs, Population Division. (2014). World population prospects: the 2014 revision, highlights: edited by Economics and Social Affairs. United Nations (NY): United Nations Population DivisionGoogle Scholar
  52. WRB, IUSS Working Group. (2015). World Reference Base for Soil Resources 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Google Scholar
  53. Zhang Y, Qian Y, Bremer DJ, Kaye JP (2013) Simulation of nitrous oxide emissions and estimation of global warming potential in turfgrass systems using the DAYCENT model. J Environ Qual 42(4):1100–1108CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lona van Delden
    • 1
  • Eloise Larsen
    • 1
  • David Rowlings
    • 1
  • Clemens Scheer
    • 1
  • Peter Grace
    • 1
  1. 1.Queensland University of Technology (QUT)BrisbaneAustralia

Personalised recommendations