Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter?

Abstract

Species that successfully inhabit urban ecosystems are rare, and urbanisation often drives localised extinctions of native species. Nonetheless, some species take advantage of the novel conditions available in cities and increase in abundance. Trends in the abundance and distribution of species in urban areas have received much attention, but the precise elements of urban ecosystems that affect the survival of urban-dwelling species are largely unknown. Animals that successfully exploit urban environments may do so because of increases in the availability of resources or habitats. Here we assess the effects of anthropogenic landscapes and prey abundance on the persistence of an orb-weaving spider, Nephila plumipes. We assessed spider persistence for six months in situ along an urban gradient in Sydney. We then transplanted spiders from a common garden into sites along the gradient, monitored their persistence in the new environment and measured a suite of environmental variables at local and landscape scales. The abundance of prey was closely linked with spider persistence, in both the survey and the transplant experiment, and was positively associated with anthropogenic habitats. The surveyed spiders survived longer when located closer to the coast and transplanted spiders persisted longer in smaller sites with more impervious surfaces and reduced vegetation cover. Our study shows that urbanisation has a strong effect on potential prey abundance and can lead to increased persistence of N. plumipes, demonstrating the broad impacts that habitat disturbance can have on the life history and trophic interactions of city-dwelling animals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. ABS (2011) Australian Bureau of Statistics. www.abs.gov.au/websitedbs/censushome.nsf/home/censussamplefiles?opendocument&navpos=263

  2. Austad SN (1989) Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Exp Gerontol 24:83–92. doi:10.1016/0531-5565(89)90037-5

  3. Bang C, Faeth SH (2011) Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landscape Urban Plan 103:383–399. doi:10.1016/j.landurbplan.2011.08.013

  4. Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519

  5. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102. doi:10.1016/j.tree.2006.11.001

  6. Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Eviron 5:80–88. doi:10.1890/1540-9295(2007)5[80:shiuer]2.0.co;2

  7. Christie FJ, Hochuli DF (2005) Elevated levels of herbivory in urban landscapes: are declines in tree health more than an edge effect? Ecol Soc 10(1):10

  8. Christie F, Cassis G, Hochuli D (2010) Urbanization affects the trophic structure of arboreal arthropod communities. Urban Ecosyst 13:169–180. doi:10.1007/s11252-009-0115-x

  9. Dale AG, Frank SD (2014) Urban warming trumps natural enemy regulation of herbivorous pests. Ecol Appl 24:1596–1607. doi:10.1890/13-1961.1

  10. Eisenbeis G, Hänel A, McDonnell M, Hahs A, Breuste J (2009) Light pollution and the impact of artificial night lighting on insects. ecology of cities and towns: a comparative approach. Cambridge University Press, New York, pp 243–263

  11. Eskafi FM, Frazier JL, Hocking RR, Norment BR (1977) Influence of environmental factors on longevity of the brown recluse spider. J Med Entomol 14:221–228. doi:10.1093/jmedent/14.2.221

  12. Faeth SH, Warren PS, Shochat E, Marussich WA (2005) Trophic dynamics in urban communities. Bioscience 55:399–407. doi:10.1641/0006-3568(2005)055[0399:tdiuc]2.0.co;2

  13. Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100

  14. Greenstone MH (1984) Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia 62:299–304. doi:10.1007/bf00384260

  15. Gunnarsson B (1996) Bird predation and vegetation structure affecting spruce-living arthropods in a temperate forest. J Anim Ecol 65:389–397. doi:10.2307/5885

  16. Gunnarsson B, Wiklander K (2015) Foraging mode of spiders affects risk of predation by birds. Biol J Linn Soc 115:58–68. doi:10.1111/bij.12489

  17. Harvey MS, Austin AD, Adams M (2007) The systematics and biology of the spider genus Nephila (Araneae: Nephilidae) in the Australasian region. Invertebr Syst 21:407–451. doi:10.1071/IS05016

  18. Herberstein ME, Elgar MA (1994) Foraging strategies of Eriophora transmarina and Nephila plumipes (Araneae: Araneoidea): nocturnal and diurnal orb-weaving spiders. Aust J Ecol 19:451–457. doi:10.1111/j.1442-9993.1994.tb00511.x

  19. Higgins L (2000) The interaction of season length and development time alters size at maturity. Oecologia 122:51–59. doi:10.1007/pl00008835

  20. Higgins L, Goodnight C (2011) Developmental response to low diets by giant Nephila clavipes females (Araneae: Nephilidae). J Arachnol 39:399–408. doi:10.1636/B11-18.1

  21. Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

  22. Johnson JC, Trubl PJ, Miles LS (2012) Black widows in an urban desert: city-living compromises spider fecundity and egg investment despite urban prey abundance. Am Midl Nat 168:333–340

  23. Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: can anyone become an ‘urban exploiter'? J Biogeogr 34:638–651. doi:10.1111/j.1365-2699.2006.01638.x

  24. Karlsson B, Van Dyck H (2005) Does habitat fragmentation affect temperature-related life-history traits? a laboratory test with a woodland butterfly. Proc R Soc B 272:1257–1263. doi:10.1098/rspb.2005.3074

  25. Kasumovic MM, Brooks RC, Andrade MCB (2009) Body condition but not dietary restriction prolongs lifespan in a semelparous capital breeder. Biol Lett 5:636–638. doi:10.1098/rsbl.2009.0335

  26. Kleinteich A, Wilder SM, Schneider JM (2015) Contributions of juvenile and adult diet to the lifetime reproductive success and lifespan of a spider. Oikos 124:130–138

  27. Kralj-Fišer S, Schneider JM (2012) Individual behavioural consistency and plasticity in an urban spider. Anim Behav 84:197–204. doi:10.1016/j.anbehav.2012.04.032

  28. Li D (2002) The combined effects of temperature and diet on development and survival of a crab spider, Misumenops tricuspidatus (Fabricius) (Araneae: Thomisidae). J Therm Biol 27:83–93. doi:10.1016/S0306-4565(01)00018-3

  29. Li D, Jackson RR (1996) How temperature affects development and reproduction in spiders: a review. J Therm Biol 21:245–274. doi:10.1016/0306-4565(96)00009-5

  30. Lövei GL, Magura T, Tóthmérész B, Ködöböcz V (2006) The influence of matrix and edges on species richness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands. Global Ecol Biogeogr 15:283–289. doi:10.1111/j.1466-8238.2005.00221.x

  31. Lowe EC, Wilder SM, Hochuli DF (2014) Urbanisation at multiple scales is associated with larger size and higher fecundity of an orb-weaving spider. PLoS ONE 9:e105480. doi:10.1371/journal.pone.0105480

  32. McDonnell M, Hahs A (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landscape Ecol 23:1143–1155. doi:10.1007/s10980-008-9253-4

  33. McIntyre NE, Rango J, Fagan WF, Faeth SH (2001) Ground arthropod community structure in a heterogeneous urban environment. Landscape Urban Plan 52:257–274. doi:10.1016/s0169-2046(00)00122-5

  34. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890. doi:10.1641/0006-3568(2002)052[0883:ubac]2.0.co;2

  35. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi:10.1016/j.biocon.2005.09.005

  36. McKinney M (2008) Effects of urbanization on species richness: a review of plants and animals. 11:161–176 doi:10.1007/s11252-007-0045-4

  37. McNett BJ, Rypstra AL (2000) Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecol Entomol 25:423–432. doi:10.1046/j.1365-2311.2000.00279.x

  38. Meineke EK, Dunn RR, Sexton JO, Frank SD (2013) Urban warming drives insect pest abundance on street trees. PLoS ONE 8:e59687. doi:10.1371/journal.pone.0059687

  39. Melles S, Glenn SM, Martin K et al. (2003) Urban bird diversity and landscape complexity: species-environment associations along a multiscale habitat gradient. Ecol Soc 7

  40. Miyashita T (1986) Growth, egg production, and population density of the spide, Nephila clavata in relation to food conditions in the field. Res Popul Ecol 28:135–149. doi:10.1007/BF02515542

  41. Newbold T et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. doi:10.1038/nature14324

  42. Penick CA, Savage AM, Dunn RR (2015) Stable isotopes reveal links between human food inputs and urban ant diets. Proc R Soc B 282:1806. doi:10.1098/rspb.2014.2608

  43. Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. PNAS 92:4382–4386

  44. Raupp MJ, Shrewsbury PM, Herms DA (2010) Ecology of herbivorous arthropods in urban landscapes. Annu Rev Entomol 55:19–38. doi:10.1146/annurev-ento-112408-085351

  45. Riechert H (2000) Local population success in heterogeneous habitats: reciprocal transplant experiments completed on a desert spider. J Evolution Biol 13:541–550. doi:10.1046/j.1420-9101.2000.00176.x

  46. Rubio A, Bellocq MI, Vezzani D (2013) Macro- and microenvironmental factors affecting tyre-breeding flies (Insecta: Diptera) in urbanised areas. Ecol Entomol 38:303–314. doi:10.1111/een.12016

  47. Rypstra AL (1985) Aggregations of Nephila clavipes (L.)(Araneae, Araneidae) in relation to prey availability. J Arachnol 71–78

  48. Sandoval C (1994) Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Funct Ecol 8:701–707

  49. Schneider JM, Elgar MA (2001) Sexual cannibalism and sperm competition in the golden orb-web spider Nephila plumipes (Araneoidea): female and male perspectives. Behav Ecol 12:547–552. doi:10.1093/beheco/12.5.547

  50. Shochat E, Stefanov WL, Whitehouse MEA, Faeth SH (2004) Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Ecol Appl 14:268–280. doi:10.1890/02-5341

  51. Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199–208. doi:10.1525/bio.2010.60.3.6

  52. Sorace A, Gustin M (2009) Distribution of generalist and specialist predators along urban gradients. Landscape Urban Plan 90:111–118. doi:10.1016/j.landurbplan.2008.10.019

  53. Spencer RP (1990) Relationship of reproductive success and median longevity to food intake, in the captive female spider Frontinella pyramitela. Mech Ageing Dev 55:9–13. doi:10.1016/0047-6374(90)90102-L

  54. Sumasgutner P, Nemeth E, Tebb G, Krenn HW, Gamauf A (2014) Hard times in the city—attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey. Front Zool 11:13. doi:10.1186/1742-9994-11-48

  55. Trubl P, Gburek T, Miles L, Johnson J (2012) Black widow spiders in an urban desert: population variation in an arthropod pest across metropolitan Phoenix, AZ. Urban Ecosyst 15:599–609. doi:10.1007/s11252-011-0223-2

  56. Varet M, Pétillon J, Burel F (2011) Comparative responses of spider and carabid beetle assemblages along an urban–rural boundary gradient. J Arachnol 39:236–243. doi:10.1636/cp10-82.1

  57. Vollrath F (1985) Web spider’s dilemma: a risky move or site dependent growth. Oecologia 68:69–72. doi:10.1007/BF00379476

  58. Voss SC, Main BY, Dadour IR (2007) Habitat preferences of the urban wall spider Oecobius navus (Araneae, Oecobiidae). Aust J Ento 46:261–268. doi:10.1111/j.1440-6055.2007.00616.x

  59. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89:467–483. doi:10.1016/j.rse.2003.11.005

  60. Wise DH (1995) Spiders in ecological webs. Cambridge University Press, Cambridge

  61. Wise DH, Chen B (1999) Impact of intraguild predators on survival of a forest-floor wolf spider. Oecologia 121:129–137. doi:10.1007/s004420050914

  62. Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106:375–386. doi:10.1016/j.rse.2006.09.003

Download references

Acknowledgments

We would like to thank H. Lydecker, M. Erickson, J. Lowe and P. Lowe for their help in the field. This work was supported by a student research grant from the Ecological Society of Australia. The New South Wales National Parks and Wildlife Service granted permission for the fieldwork in National Parks.

Author information

Correspondence to E. C. Lowe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Map of sites used in the survey and transplant experiment. Sydney, New South Wales, Australia. (PDF 152 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lowe, E.C., Wilder, S.M. & Hochuli, D.F. Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter?. Urban Ecosyst 19, 705–720 (2016). https://doi.org/10.1007/s11252-015-0518-9

Download citation

Keywords

  • Urbanisation
  • Microhabitat
  • Survival
  • Prey abundance
  • Resources
  • Urban exploiter