Advertisement

Urban Ecosystems

, Volume 18, Issue 4, pp 1353–1372 | Cite as

Assessing aquatic biodiversity of zooplankton communities in an urban landscape

  • El-Amine MimouniEmail author
  • Bernadette Pinel-Alloul
  • Beatrix E. Beisner
Article

Abstract

Aquatic ecosystems are common in urban environments. A solid understanding of aquatic species’ distributions in urban habitats will both advance urban ecology and preserve biodiversity in cities. In particular, zooplankton are central components of aquatic food webs and their biodiversity patterns thus warrant further characterization and understanding. We examined sources of variation and biodiversity patterns of zooplankton communities across eighteen waterbodies in the urban landscape of Canada’s large island city of Montreal. We report a total of 80 zooplankton taxa of which rotifers and cladocerans were major contributing taxa to biodiversity. We found a lack of agreement between contributions of individual waterbodies to rotifer and cladoceran beta diversity. Littoral vegetated zones proved to be important habitats for zooplankton biodiversity, contributing considerably to the species richness pool, often with a different species composition. Further variation in zooplankton community composition was attributable to local factors such as waterbody size, algal biomass and composition, and macroinvertebrate predators, but also to urban management practices such as waterbody draining during winter. We show that urban waterbodies can represent important reservoirs of biodiversity. Management practices favoring a large diversity of permanent and temporary habitats with littoral vegetated zones should be incorporated in urban design and conservation plans.

Keywords

Biodiversity Zooplankton Community structure Urban ecology Littoral zone 

Notes

Acknowledgments

El-Amine Mimouni, Ph.D. candidate, is supported by the collaborative research funds of the GRIL (Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique) and the CSBQ (Centre de la Science de la Biodiversité du Québec). We thank Pierre Legendre for several engaging discussion regarding the statistical aspects and for comments on an earlier draft of the manuscript. We also thank students and research fellows who participated to field sampling (Adrien André, Anne-Hélène Lejeune, Joseph Nzieleu Tchapgnouo, Ginette Méthot, Lama Aldamman) or laboratory analysis (Louise Cloutier, Maryse Robert, Nicolas Dedieu). The research was supported by grants to BPA and BEB through the CRSNG (Conseil de Recherche en Sciences Naturelles et en Génie) and the FQRNT (Fonds de Recherche du Québec – Nature et Technologies).

Conflicts of interests

The authors declare that they have no conflicts of interest.

Supplementary material

11252_2015_457_MOESM1_ESM.docx (66 kb)
ESM 1 (DOCX 65.9 kb)
11252_2015_457_MOESM2_ESM.docx (52 kb)
ESM 2 (DOCX 52.2 kb)

References

  1. Anderson MJ (2006) Distance‐Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62(1):245–253CrossRefPubMedGoogle Scholar
  2. Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88(7):1675–1686CrossRefPubMedGoogle Scholar
  3. Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87(12):2985–2991CrossRefPubMedGoogle Scholar
  4. Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen UP, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72(1):39–53CrossRefPubMedGoogle Scholar
  5. Boix D, Gascón S, Martinoy M, Gifre J, Quintana XD (2005) A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian Peninsula). Aquat Conserv 15(6):635–651CrossRefGoogle Scholar
  6. Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, VerlagCrossRefGoogle Scholar
  7. Boven L, Brendonck L (2009) Impact of hydroperiod on seasonal dynamics in temporary pool cladoceran communities. Fund Appl Limnol 174(2):147–157CrossRefGoogle Scholar
  8. Brooks JL (1959) Cladocera. In: Ward HB, Whipple GC (eds) Freshwater biology. Wiley, New York, pp 587–656Google Scholar
  9. Burks RL, Jeppesen E, Lodge DM (2001a) Littoral zone structures as Daphnia refugia against fish predators. Limnol Oceanogr 46(2):230–237CrossRefGoogle Scholar
  10. Burks RL, Jeppesen E, Lodge DM (2001b) Pelagic prey and benthic predators: impact of odonate predation on Daphnia. J N Am Benthol Soc 20(4):615–628CrossRefGoogle Scholar
  11. Burks RL, Lodge DM, Jeppesen E, Lauridsen TL (2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol 47(3):343–365CrossRefGoogle Scholar
  12. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27Google Scholar
  13. Céréghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597(1):1–6CrossRefGoogle Scholar
  14. Chengalath R, Koste W (1987) Rotifera from Northwestern Canada. Hydrobiologia 147:49–56CrossRefGoogle Scholar
  15. Cobbaert D, Bayley S, Gretter JL (2010) Effects of a top invertebrate predator (Dytiscus alaskanus; Coleoptera: Dytiscidae) on fishless pond ecosystems. Hydrobiologia 644:103–114CrossRefGoogle Scholar
  16. Collins JP, Kinzig A, Grimm NB, Fagan WB, Hope D, Wu J, Borer E (2000) A New Urban Ecology Modelling Human Communities as Integral Parts of Ecosystems Poses Special Problems for the Development and Testing of Ecological Theory. Am Sci 88(5):416–425CrossRefGoogle Scholar
  17. Connelly SJ, Wolyniak EA, Dieter KL, Williamson CE, Jellison KL (2007) Impact of zooplankton grazing on the excystation, viability, and infectivity of the protozoan pathogens Cryptosporidium parvum and Giardia lamblia. Appl Environ Microb 73(22):7277–7282CrossRefGoogle Scholar
  18. De Bie T, Declerck S, Martens K, De Meester L, Brendonck L (2010) A comparative analysis of cladoceran communities from different water body types: patterns in community composition and diversity. Hydrobiologia 597(1):19–27CrossRefGoogle Scholar
  19. De Bie T, De Meester L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Gucht K (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15(7):740–747CrossRefPubMedGoogle Scholar
  20. De Magny GC, Mozumder PK, Grim CJ, Hasan NA, Naser MN, Alam M, Bradley S, Anwar H, Rita RC (2011) Population Dynamics of Vibrio cholerae and Cholera in the Bangladesh Sundarbans: Role of the Zooplankton Diversity. Appl Environ Microb 77(17):6125–6132CrossRefGoogle Scholar
  21. De Meester L, Declerck S, Stoks R, Louette G, Van De Meutter F, De Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat Conserv 15(6):715–725CrossRefGoogle Scholar
  22. Declerck S, De Bie T, Ercken D, Hampel H, Schrijvers S, Van Wichelen J, Gillardin JV, Mandiki R, Losson B, Bauwens D, Keijers S, Vyverman W, Goddeeris B, De Meester L, Brendonck L, Martens K (2006) Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol Conserv 131(4):523–532CrossRefGoogle Scholar
  23. DiFonzo CD, Campbell JM (1988) Spatial partitioning of microhabitats in littoral cladoceran communities. J Freshwater Ecol 4(3):303–313CrossRefGoogle Scholar
  24. Dodson SI, Lillie RA, Will-Wolf S (2005) Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecol Appl 15(4):1191–1198CrossRefGoogle Scholar
  25. Downing JA (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 1(29):9–24Google Scholar
  26. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397CrossRefGoogle Scholar
  27. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20CrossRefGoogle Scholar
  28. Drenner SM, Dodson SI, Drenner RW, Pinder JE III (2009) Crustacean zooplankton community structure in temporary and permanent grassland ponds. Hydrobiologia 632(1):225–233CrossRefGoogle Scholar
  29. Duggan IC, Green JD, Shiel RJ (2001) Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia 446(447):155–164CrossRefGoogle Scholar
  30. Edmondson WT (1959) Rotifera. In: Ward HB, Whipple GC (eds) Freshwater biology. Wiley, New York, pp 420–494Google Scholar
  31. Ejsmont-Karabin J, Kuczyńska-Kippen N (2001) Urban rotifers: structure and densities of rotifer communities in water bodies of the Poznań agglomeration area (western Poland). Hydrobiologia 446(1):165–171CrossRefGoogle Scholar
  32. Escobar-Briones EG, Díaz C, Legendre P (2008) Meiofaunal community structure of the deep-sea Gulf of Mexico: Variability due to the sorting methods. Deep Sea Res Pt II 55(24):2627–2633, Unpublished Appendix describing two-way canonical analysis of variance for paired observations. Available online at http://www.adn.umontreal.ca/legendre/reprints CrossRefGoogle Scholar
  33. Escrivà A, Armengol X, Mezquita F (2010) Microcrustacean and rotiferan communities of two close Mediterranean mountina ponds, lagunas de Bezas and Rubiales (Spain). J Freshwater Ecol 25(3):427–435CrossRefGoogle Scholar
  34. Fairchild GW (1981) Movement and microdistribution of Sida crystallina and other littoral microcrustacea. Ecology 62(5):1341–1352CrossRefGoogle Scholar
  35. Fayer R, Trout JM, Walsh E, Cole R (2000) Rotifers ingest oocysts of Cryptosporidium parvum. J Eukaryot Microbiol 47(2):161–163CrossRefPubMedGoogle Scholar
  36. Finlay K, Beisner BE, Patoine A, Pinel-Alloul B (2007) Regional ecosystem variability drives the relative importance of bottom-up and top-down factors for zooplankton size spectra. Can J Fish Aquat Sci 64(3):516–529CrossRefGoogle Scholar
  37. Frutos SM, Carnevali R (2008) Zoo-heleoplankton structure in three artificial ponds of North-eastern Argentina. Int J Tropic Biol 56(3):1135–1147Google Scholar
  38. Gannon JE, Stemberger RS (1978) Zooplankton (especially crustaceans and rotifers) as indicators of water quality. T Am Microsc Soc 97(1):16–35CrossRefGoogle Scholar
  39. Gaston KJ, Spicer JI (2004) Biodiversity: an introduction. Blackwell, OxfordGoogle Scholar
  40. Gélinas M, Pinel-Alloul B, Ślusarczyk M (2007) Formation of morphological defences in response to YOY perch and invertebrate predation in two Daphnia species coexisting in a mesotrophic lake. Hydrobiologia 594:175–185CrossRefGoogle Scholar
  41. Gilbert JJ (1974) Dormancy in rotifers. T Am Microsc Soc 93:490–513CrossRefGoogle Scholar
  42. Gilbert JJ, Hampton SE (2001) Diel vertical migrations of zooplankton in a shallow, fishless pond: a possible avoidance-response cascade induced by notonectids. Freshwat Biol 46(5):611–621CrossRefGoogle Scholar
  43. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3–4):325–338CrossRefGoogle Scholar
  44. Gower JC, Legendre P (1986) Metric and Euclidean properties of dissimilarity coefficients. J Classif 3(1):5–48CrossRefGoogle Scholar
  45. Hairston NG Jr (1996) Zooplankton egg banks as biotic reservoirs in changing environments. Limnol Oceanogr 41(5):1087–1092CrossRefGoogle Scholar
  46. Hairston NG Jr, Hansen AM, Schaffner WR (2000) The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwat Biol 45(2):133–145CrossRefGoogle Scholar
  47. Hampton SE, Gilbert JJ (2001) Observations of insect predation on rotifers. Hydrobiologia 446(1):115–121CrossRefGoogle Scholar
  48. Haney JF, Aliberti MA, Allan E, Allard S, Bauer DJ, Beagen W, Bradt SR, Carlson B, Carlson SC, Doan UM, Dufresne J, Godkin WT, Greene S, Kaplan A, Maroni E, Melillo S, Murby AL, Smith JL, Ortman B, Quist JE, Reed S, Rowin T, Schmuck M, Stemberger RS, Travers B (2010) An image-based key to the zooplankton of the northeast, USA version 4.0 released 2010. Durham, NH: University of New Hampshire Center for Freshwater Biology. http://cfb.unh.edu/cfbkey/html/
  49. Hebert PDN (1995) The Daphnia of North America: an illustrated Fauna. CD-ROM, University of GuelphGoogle Scholar
  50. Hudson PL, Lesko LT (2003) Free-living and Parasitic Copepods of the Laurentian Great Lakes: Keys and Details on Individual Species. Ann Arbor, MI: Great Lakes Science Center Home Page. http://www.glsc.usgs.gov/greatlakescopepods/
  51. Jaccard P (1908) Nouvelles Recherches sur la Distribution Florale. B Soc Vaud Sci Nat 44:223–270Google Scholar
  52. Jose de Paggi S, Paggi J, Collins P, Collins J, Bernal G (2008) Water quality and zooplankton composition in a receiving pond of the stormwater runoff from an urban catchment. J Environ Biol 29(5):693–700PubMedGoogle Scholar
  53. Kuczyńska-Kippen N (2009a) The Spatial Segregation of Zooplankton Communities with Reference to Land Use and Macrophytes in Shallow Lake Wielkowiejskie (Poland). Int Rev Hydrobiol 94(3):267–281CrossRefGoogle Scholar
  54. Kuczyńska-Kippen N (2009b) The impact of the macrophyte substratum and season on crustacean zooplankton communities of three shallow and macrophyte-dominated lakes. J Freshwater Ecol 24(3):375–382CrossRefGoogle Scholar
  55. Langley JM, Kett S, Al-Khalili RS, Humphries CJ (1995) The conservation value of English urban ponds in terms of their rotifer fauna. Hydrobiologia 313(1):259–266CrossRefGoogle Scholar
  56. Larson GL, Hoffman R, McIntire CD, Lienkaemper G, Samora B (2009) Zooplankton assemblages in montane lakes and ponds of Mount Rainier National Park, Washington State, USA. J Plankton Res 31(3):273–285CrossRefGoogle Scholar
  57. Legendre P, De Càceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–953CrossRefPubMedGoogle Scholar
  58. Legendre P, Legendre L (2012) Numerical ecology. Elsevier Science LtdGoogle Scholar
  59. Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75(4):435–450CrossRefGoogle Scholar
  60. Longhi ML, Beisner BE (2009) Environmental factors controlling the vertical distribution of phytoplankton in lakes. J Plankton Res 31(10):1195–1207CrossRefGoogle Scholar
  61. Mahoney DL, Mort MA, Taylor BE (1990) Species richness of calanoid copepods, cladocerans and other branchiopods in Carolina bay temporary ponds. Am Midl Nat 123(2):244–258CrossRefGoogle Scholar
  62. Maier G, Hössler J, Tessenow U (1998) Succession of physical and chemical conditions and of crustacean communities in some small, man made water bodies. Int Rev Hydrobiol 83(5–6):405–418CrossRefGoogle Scholar
  63. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297CrossRefGoogle Scholar
  64. McDonnell MJ, Hahs AK (2013) The future of urban biodiversity research: Moving beyond the ‘low-hanging fruit’. Urban Ecosyst 16(3):397–409CrossRefGoogle Scholar
  65. McQueen DJ, Post JR, Mills EL (1986) Trophic relationship in freshwater pelagic ecosystems. Can J Fish Aquat Sci 43(8):1571–1581CrossRefGoogle Scholar
  66. Merritt RW, Cummins KW (1996) Introduction to the Aquatic Insects of North America, 3rd edn. Kendall/Hunt Publishing Company, DubuqueGoogle Scholar
  67. Moss B, Stephen D, Alvarez C, Becares E, Van De Bund W, Collings SE, Van Donk E, De Eyto E, Feldmann T, Fernández-Aláez C, Fernández-Aláez M, Franken RJM, García-Criado F, Gross EM, Gyllström M, Hansson L-A, Irvine K, Järvalt A, Jensen J-P, Jeppesen E, Kairesalo T, Kornijów R, Krause T, Künnap H, Laas A, Lill E, Lorens B, Luup H, Miracle MR, Nõges P, Nõges T, Nykänen M, Ott I, Peczula W, Peeters ETHM, Phillips G, Romo S, Russell V, Salujõe J, Scheffer M, Siewertsen K, Smal H, Tesch C, Timm H, Tuvikene L, Tonno I, Virro T, Vicente E, Wilson D (2003) The determination of ecological status in shallow lakes — a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat Conserv 13(6):507–549CrossRefGoogle Scholar
  68. Nogrady T, Pourriot R, Segers H (1995) Rotifera volume 3: Notommatidae and Scaridiidae. Guides to the identification of the microinvertebrates of the continental waters of the world 8, NHBS, SPB Academic PublishingGoogle Scholar
  69. Nowosad P, Kuczyńska-Kippen N, Słodkowicz-Kowalska A, Majewska AC, Graczyk TK (2007) The use of rotifers in detecting protozoan parasite infections in recreational lakes. Aquat Ecol 41(1):47–54CrossRefGoogle Scholar
  70. Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne JB (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104(1):59–70CrossRefGoogle Scholar
  71. Oertli B, Joye DA, Castella E, Juge R, Lehmann A, Lachavanne JB (2005) PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquat Conserv 15:665–679CrossRefGoogle Scholar
  72. Oksanen, J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Sólymos P, Stevens MHH, Wagner H (2012) vegan: Community Ecology Package. R package version 2.0-3. http://CRAN.R-project.org/package=vegan
  73. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290CrossRefPubMedGoogle Scholar
  74. Patoine A, Pinel-Alloul B, Prepas EE, Carignan R (2000) Do logging and forest fires influence zooplankton biomass in Canadian Boreal Shield lakes? Can J Fish Aquat Sci 57(S2):155–164CrossRefGoogle Scholar
  75. Peretyatko A, Teissier S, De Backer S, Triest L (2009) Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Hydrobiologia 634(1):125–135CrossRefGoogle Scholar
  76. Peretyatko A, Teissier S, De Backer S, Triest L (2012) Biomanipulation of hypereutrophic ponds: when it works and why it fails. Environ Monit Assess 184(3):1517–1531CrossRefPubMedGoogle Scholar
  77. Pickett STA, Burch WR, Dalton SE, Foresman TW, Grove JM, Rowntree R (1997) A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosyst 1(4):185–199CrossRefGoogle Scholar
  78. Pinel-Alloul B (1995) Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300(1):17–42CrossRefGoogle Scholar
  79. Pinel-Alloul B, Mimouni E-A (2013) Are cladoceran diversity and community structure linked to spatial heterogeneity in urban landscapes and pond environments? Hydrobiologia 715:195–212CrossRefGoogle Scholar
  80. Pinel-Alloul B, Méthot G, Verreault G, Vigneault Y (1990) Zooplankton species associations in Quebec lakes: variation with abiotic factors, including natural and anthropogenic acidification. Can J Fish Aquat Sci 47(1):110–121CrossRefGoogle Scholar
  81. Pinel-Alloul B, Niyonsenga T, Legendre P (1995) Spatial and environmental components of freshwater zooplankton structure. Ecoscience 2(1):1–19Google Scholar
  82. Pinel-Alloul B, André A, Legendre P, Cardille J, Patalas K, Salki A (2013) Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Global Ecol Biogeogr 22:784–795CrossRefGoogle Scholar
  83. Pinto-Coelho R, Pinel-Alloul B, Méthot G, Havens K (2005) Relationships of crustacean zooplankton with latitude and trophic gradients in lakes and reservoirs of temperate and tropical regions. Can J Fish Aquat Sci 62:348–361CrossRefGoogle Scholar
  84. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0Google Scholar
  85. Radzikowski J (2013) Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J Plankton Res 35(4):707–723CrossRefGoogle Scholar
  86. Rao CR (1995) A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19(1):23–63Google Scholar
  87. Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446(447):1–11CrossRefGoogle Scholar
  88. Sahuquillo M, Miracle MR (2010) Crustacean and rotifer seasonality in a Mediterranean temporary pond with high biodiversity (Lavajo de Abajo de Sinarcas, Eastern Spain). Limnetica 1(29):75–92Google Scholar
  89. Scheffer M, Portielje R, Zambrano L (2003) Fish facilitate wave resuspension of sediment. Limnol Oceanogr 48(5):1920–1926CrossRefGoogle Scholar
  90. Serrano L, Fahd K (2005) Zooplankton communities across a hydroperiod gradient of temporary ponds in the Doñana National Park (SW Spain). Wetlands 25(1):101–111CrossRefGoogle Scholar
  91. Smith DG (2001) Pennak’s Freshwater Invertebrates of the United States: Porifera to Crustacea, 4th edn. John Wiley and Sons, Inc., New YorkGoogle Scholar
  92. Smith K, Fernando CH (1978) A Guide to Freshwater Calanoid and Cyclopoid Copepod Crustacea of Ontario. Department of Biology, University of WaterlooGoogle Scholar
  93. Stemberger RS (1979) A Guide to Rotifers of the Laurentian Great Lakes. EPA-600/4-79-021Google Scholar
  94. Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR (1990) Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microb 56(6):1977–1980Google Scholar
  95. Tremel B, Frey SL, Yan ND, Somers KM, Pawson TW (2000) Habitat specificity of littoral Chydoridae (Crustacea, Branchiopoda, Anomopoda) in Plastic Lake, Ontario, Canada. Hydrobiologia 432(1–3):195–205CrossRefGoogle Scholar
  96. Vadeboncoeur Y, McIntyre PB, Vander Zanden MJ (2011) Borders of biodiversity: life at the edge of the world’s large lakes. Bioscience 61(7):526–537CrossRefGoogle Scholar
  97. Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  98. Walseng B, Hessen DO, Halvorsen G, Schartau AK (2006) Major contribution of littoral crustaceans to zooplankton species richness in lakes. Limnol Oceanogr 51(6):2600–2606CrossRefGoogle Scholar
  99. Ward J (1955) A description of new zooplankton counter. Q J Microsc Sci 96:371–373Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • El-Amine Mimouni
    • 1
    • 3
    • 4
    Email author
  • Bernadette Pinel-Alloul
    • 1
    • 3
    • 4
  • Beatrix E. Beisner
    • 2
    • 3
    • 4
  1. 1.Département de Sciences BiologiquesUniversité de MontréalMontréalCanada
  2. 2.Department of Biological SciencesUniversity of Québec at MontréalMontréalCanada
  3. 3.Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL)MontréalCanada
  4. 4.Centre de la Science de la Biodiversité du Québec (CSBQ)MontréalCanada

Personalised recommendations