Urban Ecosystems

, Volume 17, Issue 1, pp 239–253 | Cite as

Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services

  • H. Setälä
  • R. D. Bardgett
  • K. Birkhofer
  • M. Brady
  • L. Byrne
  • P. C. de Ruiter
  • F. T. de Vries
  • C. Gardi
  • K. Hedlund
  • L. Hemerik
  • S. Hotes
  • M. Liiri
  • S. R. Mortimer
  • M. Pavao-Zuckerman
  • R. Pouyat
  • M. Tsiafouli
  • W. H. van der Putten
Article

Abstract

On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.

Keywords

Agriculture Ecosystem services Land use Management optimization Soil Urban Trade-off 

References

  1. Baker LA, Wilson B, Fulton D, Horgan B (2008) Disproportionality as a framework to target pollution reduction from urban landscapes. Cities and the Environment 1. (3 October 2011; http://digitalcommons.lmu.edu/cgi/viewcontent.cgi?article=1016&context=cate)
  2. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404PubMedCrossRefGoogle Scholar
  3. Birkhofer K et al (2008) Long-term organic farming fosters below and aboveground biota: implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308CrossRefGoogle Scholar
  4. Birkhofer K, Endlweber K, Wolters V (2010) Einfluss der Landnutzung auf Diversität und Funktion der ober- und unterirdischen Fauna. In: Hotes S, Wolters V (eds) Forum Biodiversität. Oekom Verlag, pp 83–89Google Scholar
  5. Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land use trends in the coterminous United States, 1950–2000. Ecol Appl 15:1851–1863CrossRefGoogle Scholar
  6. Byrne LB, Grewal P (2008) Introduction to ecological landscaping: a holistic description and framework to guide the study and management of urban landscape parcels. Cities and the Environment 1. (3 October 2011; http://digitalcommons.lmu.edu/cgi/viewcontent.cgi?article=1030&context=cate)
  7. Cameron RWF, Blanuša T, Taylor JE, Salisbury A, Halstead AJ, Henricot B, Thomson K (2012) The domestic garden - Its contribution to urban green infrastructure. Urban Forestry & Urban Greening 11:129–137Google Scholar
  8. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67PubMedCrossRefGoogle Scholar
  9. Carpenter SR et al (2009) Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proc Natl Acad Sci U S A 106:1305–1312PubMedCentralPubMedCrossRefGoogle Scholar
  10. Daily GC (ed) (1997) Nature’s services: societal dependence on natural ecosystems. Island PressGoogle Scholar
  11. Effland WR, Pouyat RV (1997) The genesis, classification, and mapping of soils in urban areas. Urban Ecosyst 1:217–228CrossRefGoogle Scholar
  12. Eigenbrod F, Bell VA, Davis HN, Heinemayer A, Armsworth PR, Gaston KJ (2011) The impact of projected increase in urbanization on ecosystem services. Proc. R. Soc. B. 278:3201–3208. doi: 10.1098/rspb.2010.2754
  13. Ellis ECN, Ramankutty N (2008) Putting people on the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447CrossRefGoogle Scholar
  14. Foley JA et al (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  15. Folke C, Carpenter S, Elmqvist T, Gunderson L, Holling CS, Walker B (2002) Resilience and sustainable development: building adaptive capacity in a world of transformations. Ambio 31:437–440PubMedGoogle Scholar
  16. Fornara DA, Tilman D, Hobbie SE (2009) Landscape heterogeneity and farming practice influence biological control. J Ecol 97:48–56CrossRefGoogle Scholar
  17. Frazer L (2005) Paving paradise: the peril of impervious surfaces. Environ Heal Perspect 113:456–462CrossRefGoogle Scholar
  18. Grabosky J, Bassuk NL, Van Es H (1996) Testing of structural urban tree soil materials for use under pavement to increase street tree rooting volumes. J Arboric 22:255–263Google Scholar
  19. Hatt BE, Fletcher TD, Walsh CJ, Taylor SL (2004) The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ Manag 34:112–124. doi: 10.1007/s00267-004-0221-8 CrossRefGoogle Scholar
  20. Heal G (2000) Nature and the market place: capturing the value of ecosystem services. Island PressGoogle Scholar
  21. Ineson P, Levin LA, Kneib RT, Hall Jr. RO, Weslawski JM, Bardgett RD, Wardle DA, Wall DH, Van der Putten WH, Zadeh H (2004) Cascading effects of deforestation on ecosystem services across soils and freshwater and marine sediments. In: Wall DH (ed) Sustaining biodiversity and ecosystem services in soils and sediments. Island Press, pp 225–248Google Scholar
  22. Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–1869PubMedCrossRefGoogle Scholar
  23. Kaye JP, Burke IC, Mosier AR, Guerschman JP (2004) Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol Appl 14:975–981CrossRefGoogle Scholar
  24. Kleijn D, Berendse F, Smit R, Gilissen N (2001) Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature 413:723–725PubMedCrossRefGoogle Scholar
  25. Lehmann A, Stahr K (2007) Nature and significance of anthropogenic urban soils. J Soils Sediments 7:247–260CrossRefGoogle Scholar
  26. Lewis DB, Kaye JP, Gries C, Kinzig AP, Redman CL (2006) Agrarian legacy in soil nutrient pools of urbanizing arid lands. Glob Chang Biol 12:703–709CrossRefGoogle Scholar
  27. Lovell ST, Johnston DM (2009) Creating multifunctional landscapes: how can the field of ecology inform the design of the landscape? Front Ecol Environ 7:212–220CrossRefGoogle Scholar
  28. McPherson E, Nowak D, Heisler G, Grimmond S, Souch C, Grant R, Rowntree R (1997) Quantifying urban forest structure, function and value: the Chicago Urban Forest Climate Project. Urban Ecosyst 1:49–61CrossRefGoogle Scholar
  29. McPherson G, Simpson JR, Peper PJ, Xiao Q (1999) Benefit-cost analysis of Modesto’s municipal urban forest. J Arboric 25:235–248Google Scholar
  30. MEA (2005) Millennium ecosystem assessment: ecosystems and human well-being: synthesis. Island PressGoogle Scholar
  31. Mitchell R, Popham F (2007) Greenspace, urbanity, and health: relationships in England. J Epidemiol Community Health 13:138–151Google Scholar
  32. Nelson E, Polasky S, Lewis DJ, Plantinga AJ, Lonsdorf E, White D, Bael D, Lawler JJ (2008) Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. PNAS 105:9471–9476PubMedCentralPubMedCrossRefGoogle Scholar
  33. Novotny V (2003) Water quality: diffuse pollution and watershed management. John Wiley & Sons IncGoogle Scholar
  34. Ostman O, Ekbom B, Bengtsson J (2001) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2:365–371CrossRefGoogle Scholar
  35. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422PubMedCrossRefGoogle Scholar
  36. Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincet S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9:27–36. doi: 10.1890/090220 CrossRefGoogle Scholar
  37. Pavao-Zuckerman MA, Coleman DC (2007) Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Appl Soil Ecol 35:329–339CrossRefGoogle Scholar
  38. Plieninger T, Hochtl F, Spek T (2006) Traditional land-use and nature conservation in European rural landscapes. Environ Sci Pol 9:317–321CrossRefGoogle Scholar
  39. Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the USA. J Environ Qual 35:1566–1575PubMedCrossRefGoogle Scholar
  40. Pouyat RV, Belt K, Pataki D, Groffman PM, Hom J, Band L (2007) Effects of urban land-use change on biogeochemical cycles. In: Canadell P, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer, Berlin-Heidelberg-New York, pp 45–58CrossRefGoogle Scholar
  41. Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K (2010) Chemical, physical, and biological characteristics of urban soils. In: Aitkenhead-Peterson J, Volder A (eds) Urban ecosystem ecology. Agronomy Monograph 55, pp 119–152Google Scholar
  42. Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils. Biogeochemistry 101:133–149CrossRefGoogle Scholar
  43. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing trade-offs in diverse landscapes. Proc Natl Acad Sci U S A 107:5242–5247PubMedCentralPubMedCrossRefGoogle Scholar
  44. Schlüter M, Savitsky AG, McKinney DC, Lieth H (2005) Optimizing long-term water allocation in the Amudarya River delta: a water management model for ecological impact assessment. Environ Model Softw 20:529–545CrossRefGoogle Scholar
  45. Schueler T, Holland H (2000) Microbes and urban watersheds: concentrations, sources and pathways. In: Schueler T, Holland H (eds) The practice of watershed protection. The Center for Watershed Protection, Ellicott City, pp 554–565Google Scholar
  46. Seto KC, Reenbergb A, Boone CG, Fragkias M, Haase D, Langanke T, Marcotullio P, Munroe DK, Olah B, Simon D (2012) Urban land teleconnections and sustainability. PNAS 109:7687–7692PubMedCentralPubMedCrossRefGoogle Scholar
  47. Smith P, Gregory PJ, van Vuuren D, Obersteiner M, Havlik P, Rounsevell M, Woods J, Stehfest E, Bellarby J (2010) Competition for land. Philos Trans R Soc B Biol Sci 365:2941–2957CrossRefGoogle Scholar
  48. Steinmann H-H, Gerowitt B (2008) Pflanzenproduktion und Biodiversität–Miteinander oder Gegensatz? In: von Tiedemann A, Heitefuss R, Feldmann F (eds) Pflanzenproduktion im Wandel–Wandel im Pflanzenschutz. Deutsche Phytomedizinische Gesellschaft, Braunschweig, pp 45–56Google Scholar
  49. Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007) Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol Econ 64:245–252. doi: 10.1016/j.ecolecon.2007.09.020 CrossRefGoogle Scholar
  50. Tallis H, Kareiva P, Marvier M, Chang A (2008) An ecosystem services framework to support both practical conservation and economic development. PNAS 105:9457–9464PubMedCentralPubMedCrossRefGoogle Scholar
  51. Theobald DM (2005) Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecology and Society 10: 32. (3 October 2011; www.ecologyandsociety.org/vol10/iss1/art32/)
  52. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309CrossRefGoogle Scholar
  53. Turbé A, De Toni A, Benito P, Lavelle P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment)Google Scholar
  54. UNCCD (1994) United Nations convention to combat desertification in those countries experiencing serious drought and/or desertification particularly in Africa: text with annexesGoogle Scholar
  55. Van der Putten WH, et al. (2004) Ecosystem processes in natural and managed terrestrial soils and the role of soil organisms in the sustainable delivery of ecosystem goods and services. In: Wall DH (ed) Sustaining biodiversity and ecosystem services in soils and sediments. Island Press, pp 15–43Google Scholar
  56. Vauramo S, Setälä H (2010) Urban belowground food-web responses to plant community manipulation–impacts on nutrient dynamics. Landsc Urban Plan 97:1–10CrossRefGoogle Scholar
  57. Vitousek PM, Mooney HA, Lubchenco J, Melillo J (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  58. Winkler R (2006) Valuation of ecosystem goods and services: part 1: an integrated dynamic approach. Ecol Econ 59:82–93CrossRefGoogle Scholar
  59. Zurek MB, Henrichs T (2007) Linking scenarios across geographical scales in international environmental assessments. Technol Forecast Soc Chang 74:1282–1295CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • H. Setälä
    • 1
  • R. D. Bardgett
    • 5
  • K. Birkhofer
    • 2
  • M. Brady
    • 3
  • L. Byrne
    • 4
  • P. C. de Ruiter
    • 12
  • F. T. de Vries
    • 5
  • C. Gardi
    • 6
  • K. Hedlund
    • 2
  • L. Hemerik
    • 12
  • S. Hotes
    • 7
  • M. Liiri
    • 1
  • S. R. Mortimer
    • 8
  • M. Pavao-Zuckerman
    • 9
  • R. Pouyat
    • 10
  • M. Tsiafouli
    • 11
  • W. H. van der Putten
    • 13
    • 14
  1. 1.Department of Environmental SciencesUniversity of HelsinkiLahtiFinland
  2. 2.Department of BiologyLund UniversityLundSweden
  3. 3.AgriFood Economics Centre, Department of EconomicsSwedish University of Agricultural Sciences (SLU)LundSweden
  4. 4.Department of Biology, Marine Biology and Environmental ScienceRoger Williams UniversityBristolUSA
  5. 5.Soil and Ecosystem Ecology Laboratory, Lancaster Environment, CentreLancaster UniversityLancasterUK
  6. 6.Land Management and Natural Hazards UnitInstitute for the Environment, Joint Research CentreIspraItaly
  7. 7.Department of Animal EcologyJustus-Liebig-UniversityGiessenGermany
  8. 8.Centre for Agri-Environmental Research, School of Agriculture, Policy & DevelopmentUniversity of ReadingReadingUK
  9. 9.School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonUSA
  10. 10.USDA Forest ServiceArlingtonUSA
  11. 11.School of Biology, Department of EcologyAristotle UniversityThessalonikiGreece
  12. 12.Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
  13. 13.Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  14. 14.Laboratory of NematologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations