Urban Ecosystems

, Volume 17, Issue 1, pp 77–99 | Cite as

The effect of urban ground covers on arthropods: An experiment

  • Briony A. Norton
  • Linda J. Thomson
  • Nicholas S. G. Williams
  • Mark J. McDonnell


Changes to the ground layer in urban areas are extensive, but the effects on arthropod fauna are poorly understood. We undertook a manipulative experiment to examine the response of arthropods to small-scale variation in ground covers commonly found in urban parks and gardens in Australia. The ground covers tested were bare ground, leaf litter, woodchips and grass, with plot sizes of 3.6 m2. Epigeic arthropods were sampled with pitfall traps and Tullgren funnels over 12 months following establishment of the treatments. All epigeic arthropods were sorted to order and the ants (Hymenoptera: Formicidae), beetles (Coleoptera), millipedes (Diplopoda) and slaters (Isopoda: Oniscidea) were examined at lower taxonomic levels. Diverse arthropods rapidly colonised previously cleared plots in all four treatments and were most abundant in grass plots. The diversity of ants and beetles was significantly different in different ground covers and tended to be most diverse in grass plots. Despite the treatments providing very different microclimates, the fauna studied did not show strong selection for a particular cover type overall. The abundance of grass cover in the surrounding area may have led to the grass plots having the greatest abundance of arthropods. These results have important implications for developing effective small-scale conservation efforts for arthropods in anthropogenically modified landscapes, especially for species with poor dispersal abilities.


Urbanisation Habitat Leaf litter Land use Park Grass 



We are grateful to Alex Campbell and Nick Osborne for advice and assistance with the setup and maintenance of the experiment. Thanks to Alan York for the use of the Tullgren funnels and drying ovens. Comments from Nancy McIntyre and two anonymous reviewers helped to improve earlier versions of the manuscript. This research was conducted while B.N. was a recipient of an Australian Postgraduate Award and a Holsworth Wildlife Research Grant. Additional funding and support were provided by the Baker Foundation.

Supplementary material

11252_2013_297_MOESM1_ESM.docx (14 kb)
Online Resource 1 Temperature (mean, standard error, range) at the soil surface under four experimental ground cover treatments in three seasons: winter (August 2009), spring (October 2009) and summer (January 2010). All measurements are in degrees Celsius. Superscript letters indicate where there is a significant difference in temperature between ground covers within the season, at P < 0.05. (DOCX 13.8 kb)
11252_2013_297_MOESM2_ESM.docx (15 kb)
Online Resource 2 Soil moisture values from an experiment on different ground covers in an urban environment. Values are the mean ± standard deviation of gravimetric soil moisture values in each ground cover type and for when the traps went in (‘start’) and when they came out (‘end’) for each of six pitfall trap collection periods. There were no data for the third pitfall trap collection due to a malfunction in the equipment. Superscript letters indicate significant differences (P < 0.05) between soil moisture in different ground cover treatments, within the collection period (row). (DOCX 15 kb)


  1. Andersen AN (1995) A classification of Australian ant communities, based on functional-groups which parallel plant life-forms in relation to stress and disturbance. J Biogeogr 22:15–29, doi: CrossRefGoogle Scholar
  2. Andersen AN (2007) Ant diversity in arid Australia: a systematic overview. Advances in ant systematics (Hymenoptera: Formicidae): homage to E.O. Wilson—50 years of contributions, vol 80. Memoirs of the American Entomological Institute. American Entomological Institute, GainesvilleGoogle Scholar
  3. Andrew N, Rodgerson L, York A (2000) Frequent fuel-reduction burning: the role of logs and associated leaf litter in the conservation of ant biodiversity. Austral Ecol 25:99–107. doi: 10.1046/j.1442-9993.2000.01015.x CrossRefGoogle Scholar
  4. Angel S, Sheppard SC, Civco DL (2005) The dynamics of global urban expansion. Transport and Urban Development Department, The World Bank, Washington D.CGoogle Scholar
  5. Australian Government Bureau of Metereology (2009) Daily weather observations. Bureau of Metereology. Accessed 25 Aug 2011
  6. Australian Plants Society Maroondah (2001) Flora of Melbourne, 3rd edn. Hyland House, MelbourneGoogle Scholar
  7. Baker GH (1979) Eruptions of the introduced millipede, Ommatoiulus moreletti (Diplopoda, Julidae), in Australia, with notes on the native Australiosoma castaneum (Diplopoda, Paradoxosomatidae). S Aust Nat 53:36–41Google Scholar
  8. Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85:2671–2676. doi: 10.1890/04-0500 CrossRefGoogle Scholar
  9. Beard JB, Green RL (1994) The role of turfgrasses in environmental protection and their benefits to humans. J Environ Qual 23:452–460CrossRefGoogle Scholar
  10. Bormann FH, Balmori D, Geballe GT, Vernegaard L (1993) Redesigning the American lawn: a search for environmental harmony. Yale University, New HavenGoogle Scholar
  11. Brown W Jr (2000) Diversity of ants. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington D.C., pp 45–79Google Scholar
  12. Byrne LB, Bruns MA, Kim KC (2008) Ecosystem properties of urban land covers at the aboveground–belowground interface. Ecosystems 11:1065–1077. doi: 10.1007/s10021-008-9179-3 CrossRefGoogle Scholar
  13. Cheng Z, Richmond DS, Salminen SO, Grewal PS (2008) Ecology of urban lawns under three common management programs. Urban Ecosyst 11:177–195. doi: 10.1007/s11252-008-0048-9 CrossRefGoogle Scholar
  14. Choate B, Drummond F (2011) Ants as biological control agents in agricultural cropping systems. Terr Arthropod Rev 4:157–180. doi: 10.1163/187498311X571979 CrossRefGoogle Scholar
  15. Clough Y, Kruess A, Kleijn D, Tscharntke T (2005) Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J Biogeogr 32:2007–2014. doi: 10.1111/j.1365-2699.2005.01367.x CrossRefGoogle Scholar
  16. Cordner SM, Woodford N, Bassed R (2011) Forensic aspects of the 2009 Victorian bushfires disaster. Forensic Sci Int 205:2–7. doi: 10.1016/j.forsciint.2010.08.008 PubMedCrossRefGoogle Scholar
  17. Coutts AM, Beringer J, Tapper NJ (2007) Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia. J Appl Meteorol Climatol 46:477–493. doi: 10.1175/JAM2462.1 CrossRefGoogle Scholar
  18. CSIRO (2011) Ants down under. Accessed 30 May 2011
  19. Daniels GD, Kirkpatrick JB (2006) Does variation in garden characteristics influence the conservation of birds in suburbia? Biol Conserv 133:326–335. doi: 10.1016/j.biocon.2006.06.011 CrossRefGoogle Scholar
  20. David J-F, Handa IT (2010) The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biol Rev Camb Philos Soc 85:881–895. doi: 10.1111/j.1469-185X.2010.00138.x PubMedGoogle Scholar
  21. Digweed S, Currie CR, Carcamo HA, Spence JR (1995) Digging out the “digging-in effect” of pitfall traps: influences of depletion and disturbances on catches of ground beetles (Coleoptera: Carabidae). Pedobiologia 39:561–576Google Scholar
  22. Evans TA, Dawes TZ, Ward PR, Lo N (2011) Ants and termites increase crop yield in a dry climate. Nat Commun 2:1–7. doi: 10.1038/ncomms1257 CrossRefGoogle Scholar
  23. Felson AJ, Pickett STA (2005) Designed experiments: new approaches to studying urban ecosystems. Front Ecol Environ 3:549–556. doi: 10.1890/1540-9295(2005)003[0549:DENATS]2.0.CO;2 CrossRefGoogle Scholar
  24. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244CrossRefGoogle Scholar
  25. Frampton GK, van den Brink PJ, Gould PJL (2000) Effects of spring drought and irrigation on farmland arthropods in southern Britain. J Appl Ecol 37:865–883. doi: 10.1046/j.1365-2664.2000.00541.x CrossRefGoogle Scholar
  26. Gaston KJ, Smith RM, Thompson K, Warren PH (2005) Urban domestic gardens (II): experimental tests of methods for increasing biodiversity. Biodivers Conserv 14:395–413. doi: 10.1007/s10531-004-6066-x CrossRefGoogle Scholar
  27. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. doi: 10.1016/j.tree.2010.01.010 PubMedCrossRefGoogle Scholar
  28. Gibson LA, New TR (2007) Characterising insect diversity on Australia’s remnant native grasslands: ants (Hymenoptera: Formicidae) and beetles (Coleoptera) at Craigieburn Grasslands Reserve, Victoria. J Insect Conserv 11:409–413. doi: 10.1007/s10841-006-9051-8 CrossRefGoogle Scholar
  29. Gluch R, Quattrochi DA, Luvall JC (2006) A multi-scale approach to urban thermal analysis. Remote Sens Environ 104:123–132. doi: 10.1016/j.rse.2006.01.025 CrossRefGoogle Scholar
  30. Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98. doi: 10.1016/j.tree.2009.07.016 PubMedCrossRefGoogle Scholar
  31. Green AJA (1961) A study of Tasmanian Oniscoidea (Crustacea: Isopoda). Aust J Zool 9:258–366CrossRefGoogle Scholar
  32. Green AJA (1978) Introduced slaters in South Australia (Isopoda: Oniscoidea). S Aust Nat 52:46–49Google Scholar
  33. Greenslade P, Ireson J (1986) Collembola of the southern Australian culture steppe and urban environments: a review of their pest status and key to identification. Aust J Entomol 25:273–291. doi: 10.1111/j.1440-6055.1986.tb01115.x CrossRefGoogle Scholar
  34. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760. doi: 10.1126/science.1150195 PubMedCrossRefGoogle Scholar
  35. Harvey MS, Yen AL, Milledge GA (1989) Worms to wasps: an illustrated guide to Australia’s terrestrial invertebrates. Oxford University Press, MelbourneGoogle Scholar
  36. Hazelton P, Murphy B (2007) Interpreting soil test results: what do all the numbers mean? CSIRO Publishing, CollingwoodGoogle Scholar
  37. Hochuli DF, Christie FJ, Lomov B (2009) Invertebrate biodiversity in urban landscapes: assessing remnant habitat and its restoration. In: McDonnell MJ, Hahs AK, Breuste JH (eds) Ecology of cities and towns: a comparative approach. Cambridge University Press, Melbourne, pp 215–232CrossRefGoogle Scholar
  38. Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecology 28:444–464. doi: 10.1046/j.1442-9993.2003.01301.x CrossRefGoogle Scholar
  39. Hunter MR, Hunter MD (2008) Designing for conservation of insects in the built environment. Insect Conserv Divers 1:189–196. doi: 10.1111/j Google Scholar
  40. Jordan KK, Jones SC (2006) Invertebrate diversity in newly established mulch habitats in a midwestern urban landscape. Urban Ecosyst 10:87–95. doi: 10.1007/s11252-006-0003-6 CrossRefGoogle Scholar
  41. Joseph SV, Braman SK (2009) Influence of plant parameters on occurrence and abundance of arthropods in residential turfgrass. J Econ Entomol 102:1116–1122. doi: 10.1603/029.102.0333 PubMedCrossRefGoogle Scholar
  42. Kaneda S, Kaneko N (2007) Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities. Biol Fertil Soils 44:435–442. doi: 10.1007/s00374-007-0222-x CrossRefGoogle Scholar
  43. Kime RD, Golovatch SI (2000) Trends in the ecological strategies and evolution of millipedes (Diplopoda). Biol J Linn Soc 69:333–349. doi: 10.1006/bijl CrossRefGoogle Scholar
  44. Koivula M, Punttila P, Haila Y, Niemelä J (1999) Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22:424–435. doi: 10.1111/j.1600-0587.1999.tb00579.x CrossRefGoogle Scholar
  45. Lassau SA, Hochuli DF, Cassis G, Reid CAM (2005) Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Divers Distrib 11:73–82. doi: 10.1111/j.1366-9516.2005.00124.x CrossRefGoogle Scholar
  46. Lawrence JF, Britton EB (1994) Australian beetles. Melbourne University Press, MelbourneGoogle Scholar
  47. Lawrence J, Hastings A, Dallwitz M, Paine T, Zurcher E (1999) Beetles of the world: a key and information system for families and subfamilies. CSIRO Publishing, Canberra, AustraliaGoogle Scholar
  48. Lunt I, Bennett A (2000) Temperate woodlands in Victoria: distribution, composition and conservation. In: Hobbs RJ, Yates CJ (eds) Temperate eucalypt woodlands in Australia: biology, conservation, management and restoration. Surrey Beatty & Sons Pty Limited, Chipping Norton, pp 17–31Google Scholar
  49. Maerz J, Karuzas J, Madison D, Blossey B (2005) Introduced invertebrates are important prey for a generalist predator. Divers Distrib 11:83–90. doi: 10.1111/j.1366-9516.2005.00125.x CrossRefGoogle Scholar
  50. Magura T, Tothmeresz B, Elek Z (2005) Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers Conserv 14:475–491. doi: 10.1007/s10531-004-7307-8 CrossRefGoogle Scholar
  51. Majer JD (1978) An improved pitfall trap for sampling ants and other epigaeic invertebrates. Aust J Entomol 17:261–262. doi: 10.1111/j.1440-6055.1978.tb00155.x CrossRefGoogle Scholar
  52. Majer JD, Shattuck SO, Andersen AN, Beattie AJ (2004) Australian ant research: fabulous fauna, functional groups, pharmaceuticals, and the Fatherhood. Aust J Entomol 43:235–247. doi: 10.1111/j.1326-6756.2004.00435.x CrossRefGoogle Scholar
  53. McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835. doi: 10.1603/0013-8746(2000)093 CrossRefGoogle Scholar
  54. McIntyre NE, Rango J, Fagan WF, Faeth SH (2001) Ground arthropod community structure in a heterogeneous urban environment. Landsc Urban Plan 52:257–274. doi: 10.1016/S0169-2046(00)00122-5 CrossRefGoogle Scholar
  55. Melbourne B (1999) Bias in the effect of habitat structure on pitfall traps: an experimental evaluation. Aust J Ecol 24:228–239. doi: 10.1046/j.1442-9993.1999.00967.x CrossRefGoogle Scholar
  56. Menke SB, Guénard B, Sexton JO, Weiser MD, Dunn RR, Silverman J (2010) Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst 14:135–163. doi: 10.1007/s11252-010-0150-7 CrossRefGoogle Scholar
  57. Mesibov R (2008) Millipede salvage in south-western Victoria. Vic Nat 125:96Google Scholar
  58. Mesibov R (2011) Millipedes of Australia. Accessed 29 Nov 2011
  59. Nakamura A, Proctor H, Catterall CP (2003) Using soil and litter arthropods to assess the state of rainforest restoration. Ecol Manag Restor 4:S20–S28. doi: 10.1046/j.1442-8903.4.s.3.x CrossRefGoogle Scholar
  60. Nakamura A, Catterall CP, Kitching RL, House APN, Burwell CJ (2008) Effects of isolation on the colonisation of restored habitat patches by forest-dependent arthropods of soil and litter. Insect Conserv Divers 1:9–21. doi: 10.1111/j.1752-4598.2007.00002.x CrossRefGoogle Scholar
  61. Nakamura A, Catterall CP, Burwell CJ, Kitching RL, House APN (2009) Effects of shading and mulch depth on the colonisation of habitat patches by arthropods of rainforest soil and litter. Insect Conserv Divers 2:221–231. doi: 10.1111/j.1752-4598.2009.00056.x CrossRefGoogle Scholar
  62. Nash M, Thomson L, Hoffmann A (2008) Effect of remnant vegetation, pesticides, and farm management on abundance of the beneficial predator Notonomus gravis (Chaudoir) (Coleoptera: Carabidae). Biol Control 46:83–93. doi: 10.1016/j.biocontrol.2008.03.018 CrossRefGoogle Scholar
  63. Neville PJ, Yen AL (2007) Standardising terrestrial invertebrate biomonitoring techniques across natural and agricultural systems. Aust J Exp Agric 47:384–391. doi: 10.1071/EA05268 CrossRefGoogle Scholar
  64. Norton BA (2011) The sanitisation of urban ecosystems: simplification of the ground layer in eucalypt woodlands and the effects on arthropod communities. PhD thesis, University of Melbourne, MelbourneGoogle Scholar
  65. Paoletti MG, Osler GHR, Kinnear A, Black DG, Thomson LJ, Tsitsilas A, Sharley D, Judd S, Neville P, D’Inca A (2007a) Detritivores as indicators of landscape stress and soil degradation. Aust J Exp Agric 47:412–423. doi: 10.1071/EA05297 CrossRefGoogle Scholar
  66. Paoletti MG, Thomson LJ, Hoffmann AA (2007b) Using invertebrate bioindicators to assess agricultural sustainability in Australia: proposals and current practices. Aust J Exp Agric 47:379–383. doi: 10.1071/EA05288 CrossRefGoogle Scholar
  67. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365. doi: 10.1007/978-0-387-73412-5_12 CrossRefGoogle Scholar
  68. Pauleit S, Ennos R, Golding Y (2005) Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside, UK. Landsc Urban Plan 71:295–310. doi: 10.1016/j.landurbplan.2004.03.009 CrossRefGoogle Scholar
  69. Pearce JL, Schuurman D, Barber KN, Larrivee M, Venier LA, McKee J, McKenney D (2005) Pitfall trap designs to maximize invertebrate captures and minimize captures of nontarget vertebrates. Can Entomol 137:233–250. doi: 10.4039/n04-029 CrossRefGoogle Scholar
  70. Pećarević M, Danoff-Burg J, Dunn RR (2010) Biodiversity on broadway-enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. PLoS One 5:e13222. doi: 10.1371/journal.pone.0013222 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Petal J, Nowak E, Jakubczyk H, Czerwinski Z (1977) Effect of ants and earthworms on soil habitat modification. Ecol Bull 25:501–503, doi: Google Scholar
  72. Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Troy A, Warren P (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92:331–362. doi: 10.1016/j.jenvman.2010.08.022 PubMedCrossRefGoogle Scholar
  73. Ponder W, Lunney D (eds) (1999) The other 99 %: the conservation and biodiversity of invertebrates. The Royal Zoological Society of New South Wales, SydneyGoogle Scholar
  74. Presland G (2008) The place for a village: how nature shaped the city of Melbourne. Museum Victoria, MelbourneGoogle Scholar
  75. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Port MelbourneCrossRefGoogle Scholar
  76. R Development Core Team (2011) R version 2.13.0. The R Foundation for Statistical Computing, ViennaGoogle Scholar
  77. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99PubMedCrossRefGoogle Scholar
  78. Ricketts TH, Williams NM, Mayfield MM (2006) Connectivity and ecosystem services: crop pollination in agricultural landscapes. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Melbourne, pp 255–290, doi: CrossRefGoogle Scholar
  79. Rochefort S, Shetlar DJ, Brodeur J (2006a) Ground beetle assemblages (Coleoptera: Carabidae) and their seasonal abundance in cool season turfgrass lawns of Quebec. Environ Entomol 35:1508–1514. doi: 10.1603/0046-225X(2006)35[1508:GBACCA]2.0.CO;2 CrossRefGoogle Scholar
  80. Rochefort S, Therrien F, Shetlar DJ, Brodeur J (2006b) Species diversity and seasonal abundance of Collembola in turfgrass ecosystems of North America. Pedobiologia 50:61–68. doi: 10.1016/j.pedobi.2005.10.007 CrossRefGoogle Scholar
  81. Sayer EJ, Tanner EVJ, Lacey AL (2006) Effects of litter manipulation on early-stage decomposition and meso-arthropod abundance in a tropical moist forest. Forest Ecol Manage 229:285–293. doi: 10.1016/j.foreco.2006.04.007 CrossRefGoogle Scholar
  82. Schaffers AP, Raemakers IP, Sýkora KV, Ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794. doi: 10.1890/07-0361.1 PubMedCrossRefGoogle Scholar
  83. Sentek Sensor Technologies (2001) Calibration of Sentek Pty Ltd Soil Moisture Sensors. Sentek Pty LtdGoogle Scholar
  84. Sharley DJ, Hoffmann AA, Thomson LJ (2008) The effects of soil tillage on beneficial invertebrates within the vineyard. Agric For Entomol 10:233–243. doi: 10.1111/j.1461-9563.2008.00376.x CrossRefGoogle Scholar
  85. Shattuck SO (1999) Australian ants: their biology and identification. CSIRO Publishing, CanberraGoogle Scholar
  86. Sierwald P, Shear WA, Bond JE (2007) MILLI-PEET: an illustrated key to order. The Field Museum. Accessed 11 July 2012
  87. Sperling CD, Lortie CJ (2009) The importance of urban backgardens on plant and invertebrate recruitment: a field microcosm experiment. Urban Ecosyst 13:223–235. doi: 10.1007/s11252-009-0114-y CrossRefGoogle Scholar
  88. Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432. doi: 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 CrossRefGoogle Scholar
  89. Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652. doi: 10.1016/j.tree.2005.09.004 PubMedCrossRefGoogle Scholar
  90. Stone B Jr (2004) Paving over paradise: how land use regulations promote residential imperviousness. Landsc Urban Plan 69:101–113. doi: 10.1016/j.landurbplan.2003.10.028 CrossRefGoogle Scholar
  91. Sukopp H (2004) Human-caused impact on preserved vegetation. Landsc Urban Plan 68:347–355. doi: 10.1016/S0169-2046(03)00152-X CrossRefGoogle Scholar
  92. Thomson LJ, Hoffmann AA (2007) Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agric For Entomol 9:173–179. doi: 10.1111/j.1461-9563.2007.00322.x CrossRefGoogle Scholar
  93. Thomson LJ, Neville PJ, Hoffmann AA (2004) Effective trapping methods for assessing invertebrates in vineyards. Aust J Exp Agric 44:947–953. doi: 10.1071/EA03219 CrossRefGoogle Scholar
  94. Tolhurst K (2009) Report on the physical nature of the Victorian fires occurring on 7th February 2009. Counsel Assisting the Royal Commission, MelbourneGoogle Scholar
  95. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi: 10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  96. Vilisics F, Hornung E (2009) Urban areas as hot-spots for introduced and shelters for native isopod species. Urban Ecosyst 12:333–345. doi: 10.1007/s11252-009-0097-8 CrossRefGoogle Scholar
  97. Walters AC (2006) Invasion of Argentine ants (Hymenoptera: Formicidae) in South Australia: impacts on community composition and abundance of invertebrates in urban parklands. Austral Ecol 31:567–576. doi: 10.1111/j.1442-9993.2006.01592.x CrossRefGoogle Scholar
  98. Weigmann G (1980) The colonization of ruderal biotopes in the city of Berlin by arthropods. In: Bornkamm R, Lee JA, Seaward MRD (eds) Urban ecology. Blackwell Scientific Publications, Melbourne, pp 75–82Google Scholar
  99. White JG, Antos MJ, Fitzsimons JA, Palmer GC (2005) Non-uniform bird assemblages in urban environments: the influence of streetscape vegetation. Landsc Urban Plan 71:123–135. doi: 10.1016/j.landurbplan.2004.02.006 CrossRefGoogle Scholar
  100. Yen AL (2011) Melbourne’s terrestrial invertebrate biodiversity: losses, gains and the new perspective. Vic Nat 128:201–208Google Scholar
  101. York A (1999) Long-term effects of frequent low-intensity burning on the abundance of litter-dwelling invertebrates in coastal blackbutt forests of southeastern Australia. J Insect Conserv 199:191–199. doi: 10.1023/A:1009643627781 CrossRefGoogle Scholar
  102. York A (2000) Long-term effects of frequent low-intensity burning on ant communities in coastal blackbutt forests of southeastern Australia. Austral Ecol 25:83–98. doi: 10.1046/j.1442-9993.2000.01014.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Briony A. Norton
    • 1
    • 2
    • 5
  • Linda J. Thomson
    • 3
  • Nicholas S. G. Williams
    • 1
    • 2
  • Mark J. McDonnell
    • 2
    • 4
  1. 1.Melbourne School of Land and EnvironmentThe University of MelbourneRichmondAustralia
  2. 2.Australian Research Centre for Urban EcologyRoyal Botanic Gardens MelbourneMelbourneAustralia
  3. 3.Bio21, Zoology DepartmentThe University of MelbourneParkvilleAustralia
  4. 4.School of BotanyThe University of MelbourneParkvilleAustralia
  5. 5.Department of Resource Management and Geography, Melbourne School of Land and EnvironmentThe University of MelbourneRichmondAustralia

Personalised recommendations