Urban Ecosystems

, Volume 16, Issue 3, pp 617–635 | Cite as

Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ

  • Juan Declet-Barreto
  • Anthony J. Brazel
  • Chris A. Martin
  • Winston T. L. Chow
  • Sharon L. Harlan
Article

Abstract

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and a proposed scenario informed by principles of landscape design and architecture and Urban Heat Island mitigation strategies. We found significant potential air and surface temperature reductions between representative and proposed vegetation scenarios: 1) a Park Cool Island effect that extended to non-vegetated surfaces; 2) a net cooling of air underneath or around canopied vegetation ranging from 0.9 °C to 1.9 °C during the warmest time of the day; and 3) potential reductions in surface temperatures from 0.8 °C to 8.4 °C in areas underneath or around vegetation.

Keywords

Microclimate simulation Heat island Urban vegetation Heat wave Phoenix Park cool island 

Supplementary material

11252_2012_278_MOESM1_ESM.jpg (1.6 mb)
Online Resource 1(a)dTa between RV and LA Vegetation Scenarios (°C) at 0500 hrs, and (b) LISA Analysis of dTa between RV and LA Vegetation Scenarios (°C) at 0500 hrs. High/high and low/low LISA results are significant at the 95 percent confidence interval. (JPEG 1675 kb)
11252_2012_278_MOESM2_ESM.jpg (1.6 mb)
Online Resource 2(a)dTa between RV and LA Vegetation Scenarios (°C) at 1700 hrs, and (b) LISA Analysis of dTa between RV and LA Vegetation Scenarios (°C) at 1700 hrs. High/high and low/low LISA results are significant at the 95 percent confidence interval (JPEG 1648 kb)
11252_2012_278_MOESM3_ESM.jpg (1.2 mb)
Online Resource 3(a) Surface Covers, and (b) Linked-Histogram of Ts (°C) for RV Scenario at 1700 hrs. (JPEG 1207 kb)
11252_2012_278_MOESM4_ESM.jpg (1.2 mb)
Online Resource 4(a) Surface Covers, and (b) Linked-Histogram of Ts (°C) for LA Scenario at 1700 hrs. (JPEG 1204 kb)

References

  1. Anderson GB, Bell ML (2011) Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ Health Perspect 119(2):210–218PubMedCrossRefGoogle Scholar
  2. Anselin L (1995) Local indicators of spatial association - LISA. Geogr Anal 27:93–115CrossRefGoogle Scholar
  3. ASTER SP (2010) Characteristics of ASTER sensor. http://www.science.aster.ersdac.or.jp/en/about_aster/sensor/tokutyou.html. Accessed 11 July 2012
  4. Balling RC, Brazel SW (1987) The impact of rapid urbanization on pan evaporation in Phoenix, Arizona. J Climatol 7:593–597CrossRefGoogle Scholar
  5. Barradas VL, Tejeda-Martinez A, Jauregui E (1999) Energy balance measurements in a suburban vegetated area in Mexico City. Atmos Environ 33:4109–4113CrossRefGoogle Scholar
  6. Boone C, Buckley G, Grove J, Sister C (2009) Parks and people: an environmental justice inquiry in Baltimore, Maryland. Ann Assoc Am Geogr 99:767–787CrossRefGoogle Scholar
  7. Brazel A, Selover N, Vose R, Heisler G (2000) The tale of two climates - Baltimore and Phoenix urban LTER sites. Clim Res 15:123–135CrossRefGoogle Scholar
  8. Brazel A, Gober P, Lee SJ, Grossman-Clarke S, Zehnder J, Hedquist B, Comparri B (2007) Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Clim Res 33:171–182CrossRefGoogle Scholar
  9. Brownlow A (2006) An archaeology of fear and environmental change in Philadelphia. Geoforum 37(2):227–245CrossRefGoogle Scholar
  10. Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Software 13:373–384CrossRefGoogle Scholar
  11. Buyantuyev A, Wu J (2012) Urbanization diversifies land surface phenology in arid environments: interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. Landsc Urban Plan 105:149–159CrossRefGoogle Scholar
  12. Byrne J, Wolch J, Zhang J (2009) Planning for environmental justice in an urban national park. J Environ Plan Manag 52:365–392CrossRefGoogle Scholar
  13. Chow WTL, Pope RL, Martin CA, Brazel AJ (2011) Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts. Theor Appl Climatol 103:197–211CrossRefGoogle Scholar
  14. Currie B, Bass B (2008) Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst 11:409–422CrossRefGoogle Scholar
  15. de Groot RS, Alkemade R, Braat L, Hein L, Willeman L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272CrossRefGoogle Scholar
  16. de Smith MJ, Goodchild MF, Longley PA (2007) Geospatial Analysis. Troubador Publishing LtdGoogle Scholar
  17. Diffenbaugh N, Pal J, Trapp R, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci USA 102:15774–15778PubMedCrossRefGoogle Scholar
  18. Dooling S, Simon G, Yocom K (2006) Place-based urban ecology: a century of park planning in Seattle. Urban Ecosyst 9:299–321CrossRefGoogle Scholar
  19. Emmanuel R, Fernando H (2007) Urban heat islands in humid and arid climates: role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Clim Res 34:241–251CrossRefGoogle Scholar
  20. EPA (2011) Natural Disasters and Weather Emergencies: Extreme Heat. http://www.epa.gov/naturalevents/extremeheat.html. Accessed 11 July 2012
  21. Garcia-Cueto OR, Jauregui-Ostos E, Toudert D, Tejeda-Martinez A (2007) Detection of the urban heat island in Mexicali, B. C., Mexico and its relationship with land use. Atmosfera 20:111–131Google Scholar
  22. Gober P, Brazel A, Quay R, Myint S, Grossman-Clarke S, Miller A, Rossi S (2009) Using watered landscapes to manipulate urban heat island effects: how much water will it take to cool Phoenix? J Am Plann Assoc 76:109–121CrossRefGoogle Scholar
  23. Grimmond C, Souch C, Hubble M (1996) Influence of tree cover on summertime surface energy balance fluxes, San Gabriel Valley, Los Angeles. Clim Res 6:45–57CrossRefGoogle Scholar
  24. Grossman-Clarke S, Zehnder JA, Stefanov WL, Liu Y, Zoldak MA (2005) Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. J Appl Meteorol 44:1281–1297CrossRefGoogle Scholar
  25. Guhathakurta S, Wichert M (1998) Who pays for growth in the city of Phoenix? An equity-based perspective on suburbanization. Urban Aff Rev 33:813–838CrossRefGoogle Scholar
  26. Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63:2847–2863PubMedCrossRefGoogle Scholar
  27. Hedquist BC, Di Sabatino S, Fernando HJS, Brazel AJ (2009) Results from the Phoenix Arizona Urban Heat Island Experiment. The seventh International Conference on Urban Climate. 29 June – 3 July 2009, Yokohama, Japan. http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/384812-1-090518233339-002.pdf. Accessed 14 Dec 2012
  28. Heisler GM, Grant RH, Grimmond S, Souch C (1995) Urban forests—cooling our communities? In: Kollin C, Barratt M (eds) Proceedings: 7th national urban forest conference. American Forests. Washington, DC, pp 31–34. http://www.fs.fed.us/psw/programs/uesd/uep/products/cufr_57_EM95_25.PDF. Accessed 14 Dec 2012
  29. Hill T, Polsky C (2007) Development and drought in suburbia: a mixed methods rapid assessment of vulnerability to drought in rainy Massachusetts. Glob Environ Chang Part B Environ Hazards 7:291–301CrossRefGoogle Scholar
  30. Huttner S, Bruse M, Dostal P (2008) Using ENVI-met to simulate the impact of global warming on the microclimate in central European cities. In: Mayer H, Matzarakis A (eds) Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg Nr. 18: 5th Japanese-German Meeting on Urban Climatology, pp 307–312. http://www.envi-met.com/documents/papers/Huttner_etal_2008.pdf. Accessed 14 Dec 2012
  31. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: Synthesis Report. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm. Accessed 11 July 2012
  32. Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc Ecol 22:353–365CrossRefGoogle Scholar
  33. Jenerette GD, Harlan SL, Stefanov WL, Martin CA (2011) Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecol Appl 21:2637–2651PubMedCrossRefGoogle Scholar
  34. Jennings V, Johnson Gaither C, Schulterbrandt Gragg R (2012) Promoting environmental justice through urban green space access: a synopsis. Environ Justice 5:1–7CrossRefGoogle Scholar
  35. Lahme E, Bruse M (2003) Microclimatic effects of a small urban park in densely built-up areas: measurements and model simulations. Fifth International Conference on Urban Climate(ICUC5) Lodz, 1–5 September 2003. http://www.envi-met.com/documents/papers/park2003.pdf. Accessed 14 Dec 2012
  36. Lalic B, Mihailovic DT (2004) An empirical relation describing leaf-area density inside the forest for environmental modeling. J Appl Meteorol 43:641–645CrossRefGoogle Scholar
  37. Lowry W (1967) The climate of cities. Sci Am 217:15–23CrossRefGoogle Scholar
  38. Martin CA (2009) Virtual Library of Phoenix Landscape Plants. http://www.public.asu.edu/~camartin/Martin%20landscape%20plant%20library.htm. Accessed 11 July 2012
  39. Martin CA, Stabler LB (2002) Plant gas exchange and water status in urban desert landscapes. J Arid Environ 51:235–254CrossRefGoogle Scholar
  40. Martin CA, Stabler LB (2004) Urban horticultural ecology: interactions between plants, people and the physical environment. Acta Horticult 639:97–101Google Scholar
  41. Martin CA, Warren PS, Kinzig AP (2004) Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, Arizona. Landsc Urban Plan 69:355–368CrossRefGoogle Scholar
  42. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139PubMedCrossRefGoogle Scholar
  43. Meehl G, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997PubMedCrossRefGoogle Scholar
  44. Mills G (2006) Progress toward sustainable settlements: a role for urban climatology. Theor Appl Climatol 84:69–76CrossRefGoogle Scholar
  45. Oke TR (1989) The micrometeorology of the urban forest. Philos Trans R Soc B Biol Sci 324:335–349CrossRefGoogle Scholar
  46. Oke TR (1997) The changing climatic environments: urban climates and global environmental change. Routledge, LondonGoogle Scholar
  47. Ozkeresteci I, Crewe K, Brazel AJ, Bruse M (2003) Use and evaluation of the ENVI-Met model for environmental design and planning: an experiment of linear parks. Proceedings of the 21st International Cartographic Conference. 10–16 August 2003, Durban, South Africa. http://icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/516.pdf. Accessed 18 Dec 2012
  48. Payne-Sturges D, Gee GC, Crowder K, Hurley BJ, Lee C, Morello-Frosch R, Rosenbaum A, Schulz A, Wells C, Woodruff T, Zenich H (2006) Workshop summary: connecting social and environmental factors to measure and track environmental health disparities. Environ Res 102:146–153PubMedCrossRefGoogle Scholar
  49. Pearlmutter D, Berliner P, Shaviv E (2006) Physical modeling of pedestrian energy exchange within the urban canopy. Build Environ 41:783–795CrossRefGoogle Scholar
  50. Perkins H, Heynen N, Wilson J (2004) Inequitable access to urban reforestation: the impact of urban political economy on housing tenure and urban forests. Cities 21:291–299CrossRefGoogle Scholar
  51. Robaa S (2003) Urban-suburban/rural differences over greater Cairo, Egypt. Atmósfera 16(3):157–171. http://www.ejournal.unam.mx/atm/Vol16-3/ATM16303.pdf. Accessed 18 Dec 2012
  52. Rosheidat A, Hoffman D, Bryan H (2008) Visualizing pedestrian comfort using ENVI-Met. Third National Conference of IBPSA-USA, July 30 – August 1, 2008, Berkeley, California. http://www.ibpsa.us/simbuild2008/technical_sessions/SB08-DOC-TS10-2-Rosheidat.pdf. Accessed 18 Dec 2012
  53. Roth M (2002) Effects of cities on local climates. Proceedings of Workshop of IGES/APN Mega-City Project. Rihga Royal Hotel Kokura, Kitakyushu Japan, January 2002. http://enviroscope.iges.or.jp/contents/13/data/PDF/08-1(Roth).pdf. Accessed 18 Dec 2012
  54. Ruddell DM, Harlan SL, Grossman-Clarke S, Buyantuyev A (2010) Risk and exposure to extreme heat in microclimates of Phoenix, AZ. In: Showalter PS, Lu Y (eds) Geospatial techniques in urban hazard and disaster research. Springer, New York, pp 179–202Google Scholar
  55. Shashua-Bar L, Potchter O, Bitan A, Boltansky D, Yaakov Y (2010a) Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. Int J Climatol 30:44–57Google Scholar
  56. Shashua-Bar L, Pearlmutter D, Erell E (2010b) The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int J Climatol 31(6):1498–1506Google Scholar
  57. Spronken-Smith RA, Oke TR (1998) The thermal regime of urban parks in two cities with different summer climates. Int J Remote Sens 19(11):2085–2104CrossRefGoogle Scholar
  58. Stabler LB, Martin CA, Brazel AJ (2005) Microclimates in a desert city were related to land use and vegetation index. Urban For Urban Green 3:137–147CrossRefGoogle Scholar
  59. Stoll M, Brazel AJ (1992) Surface-air temperature relationships in the urban environment of Phoenix, Arizona. Phys Geogr 13:160–179Google Scholar
  60. USD of A (2007) National Agriculture Imagery Program (NAIP). Geospatial Data Gateway. http://datagateway.nrcs.usda.gov/. Accessed 11 July 2012
  61. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384CrossRefGoogle Scholar
  62. Walker J, Blaschke T (2008) Object-based land-cover classification for the Phoenix metropolitan area: optimization vs. transportability. Int J Remote Sens 29:2021–2040CrossRefGoogle Scholar
  63. Wilson SM (2009) An ecologic framework to study and address environmental justice and community health issues. Environ Justice 2:15–24CrossRefGoogle Scholar
  64. Wolch J, Wilson JP, Fehrenbach J (2005) Parks and park funding in Los Angeles: an equity mapping analysis. Urban Geogr 26:4–35CrossRefGoogle Scholar
  65. Wolf J, Adger WN, Lorenzoni I, Abrahamson V, Raine R (2010) Social capital, individual responses to heat waves and climate change adaptation: an empirical study of two UK cities. Glob Environ Chang 20:44–52CrossRefGoogle Scholar
  66. Zhou W, Huang G, Cadenasso ML (2011) Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc Urban Plan 102:54–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Juan Declet-Barreto
    • 1
  • Anthony J. Brazel
    • 2
  • Chris A. Martin
    • 3
  • Winston T. L. Chow
    • 4
  • Sharon L. Harlan
    • 1
  1. 1.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA
  2. 2.School of Geographical Sciences and Urban PlanningArizona State UniversityTempeUSA
  3. 3.Department of Applied Sciences and MathematicsArizona State UniversityMesaUSA
  4. 4.Department of Engineering, College of Technology and InnovationArizona State UniversityMesaUSA

Personalised recommendations