Advertisement

Instructional Science

, Volume 47, Issue 6, pp 711–739 | Cite as

Make it relevant! How prior instructions foster the integration of teacher knowledge

  • Helene ZeebEmail author
  • Felicitas Biwer
  • Georg Brunner
  • Timo Leuders
  • Alexander Renkl
Original Research

Abstract

Preservice teachers face the challenge of integrating multiple types of knowledge, such as pedagogical–psychological knowledge and subject-specific pedagogical knowledge. We investigated whether prior instruction emphasizing the importance of knowledge integration (relevance instruction) supports preservice teachers in using both knowledge types simultaneously. Seventy-two preservice music teachers participated in this computer-based study. They worked on two separate lectures about learners’ beliefs. One lecture contained pedagogical–psychological knowledge; the other contained music-specific pedagogical knowledge. The preservice teachers received either a relevance instruction before starting a new lecture or a control instruction. We found that the relevance instruction increased the simultaneous use of the two knowledge types in scenario-based tasks. In these tasks, the preservice teachers needed to provide interpretations and decisions for excerpts describing various classroom situations. The relevance instruction increased the time that the preservice teachers spent on the lectures slightly; but it did not increase the perceived task difficulty or mental effort. Furthermore, the effect of the relevance instruction was not moderated by prior knowledge. We conclude that relevance instructions are a promising approach to fostering knowledge integration in teacher education.

Keywords

General pedagogical knowledge Music education Pedagogical content knowledge Relevance instruction Teacher education 

Notes

Funding

This research was supported by grants from the German Federal Ministry of Education and Research (BMBF; 01JA1518A). The funding source was not involved in study design, data collection, analysis, report writing, or submission for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior,22(3), 261–295.  https://doi.org/10.1016/S0022-5371(83)90201-3.CrossRefGoogle Scholar
  2. Asmus, E. P. (1986). Student beliefs about the causes of success and failure in music: A study of achievement motivation. Journal of Research in Music Education,34(4), 262–278.  https://doi.org/10.2307/3345260.CrossRefGoogle Scholar
  3. Austin, J. R., & Vispoel, W. P. (1998). How American adolescents interpret success and failure in classroom music: Relationships among attributional beliefs, self-concept and achievement. Psychology of Music,26(1), 26–45.  https://doi.org/10.1177/0305735698261004.CrossRefGoogle Scholar
  4. Rieche, H., Fischer, A. K., Geißler, C., Eitel, A., Brunner, G., & Renkl, A. (2018). Wenn Schülerinnen und Schüler glauben, unmusikalisch zu sein. Beiträge Empirischer Musikpädagogik, 9, 1–23. Google Scholar
  5. Rieche, H., Leuders, T., & Renkl, A. (2019). If a student thinks, “I'm not a math person”, do preservice teachers notice? European Journal of Science and Mathematics Education, 7(1), 32–49.Google Scholar
  6. Ballantyne, J. (2006). Reconceptualising preservice teacher education courses for music teachers: The importance of pedagogical content knowledge and skills and professional knowledge and skills. Research Studies in Music Education,26(1), 37–50.  https://doi.org/10.1177/1321103X060260010101.CrossRefGoogle Scholar
  7. Ballantyne, J. (2007). Integration, contextualization and continuity: Three themes for the development of effective music teacher education programmes. International Journal of Music Education,25(2), 119–136.  https://doi.org/10.1177/0255761407079955.CrossRefGoogle Scholar
  8. Bauer, W. I. (2013). The acquisition of musical technological pedagogical and content knowledge. Journal of Music Teacher Education,22(2), 51–64.  https://doi.org/10.1177/1057083712457881.CrossRefGoogle Scholar
  9. Berry, A., Depaepe, F., & van Driel, J. (2016). Pedagogical content knowledge in teacher education. In J. Loughran & M. L. Hamilton (Eds.), International handbook of teacher education (pp. 347–386). Singapore: Springer.CrossRefGoogle Scholar
  10. Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development,78(1), 246–263.  https://doi.org/10.1111/j.1467-8624.2007.00995.x.CrossRefGoogle Scholar
  11. Blömeke, S., Gustafsson, J.-E., & Shavelson, R. J. (2015). Beyond dichotomies. Zeitschrift für Psychologie,223(1), 3–13.  https://doi.org/10.1027/2151-2604/a000194.CrossRefGoogle Scholar
  12. Bohn-Gettler, C. M., & McCrudden, M. T. (2018). Effects of task relevance instructions and topic beliefs on reading processes and memory. Discourse Processes,55(4), 410–431.  https://doi.org/10.1080/0163853X.2017.1292824.CrossRefGoogle Scholar
  13. Bråten, I., McCrudden, M. T., Stang Lund, E., Brante, E. W., & Strømsø, H. I. (2017). Task-oriented learning with multiple documents: Effects of topic familiarity, author expertise, and content relevance on document selection, processing, and use. Reading Research Quarterly, 53(3), 345–365.  https://doi.org/10.1002/rrq.197.CrossRefGoogle Scholar
  14. Bråten, I., & Samuelstuen, M. S. (2004). Does the influence of reading purpose on reports of strategic text processing depend on students’ topic knowledge? Journal of Educational Psychology,96(2), 324–336.  https://doi.org/10.1037/0022-0663.96.2.324.CrossRefGoogle Scholar
  15. Britt, M. A., & Rouet, J. F. (2012). Learning with multiple documents: Component skills and their acquisition. Enhancing the quality of learning: Dispositions, instruction, and learning processes, 276–314.Google Scholar
  16. Burnette, J. L., O’Boyle, E. H., VanEpps, E. M., Pollack, J. M., & Finkel, E. J. (2013). Mind-sets matter: A meta-analytic review of implicit theories and self-regulation. Psychological Bulletin,139(3), 655–701.  https://doi.org/10.1037/a0029531.CrossRefGoogle Scholar
  17. Butler, R. (2000). Making judgments about ability: The role of implicit theories of ability in moderating inferences from temporal and social comparison information. Journal of Personality and Social Psychology,78(5), 965–978.  https://doi.org/10.1037/0022-3514.78.5.965.CrossRefGoogle Scholar
  18. Cerdán, R., & Vidal-Abarca, E. (2008). The effects of tasks on integrating information from multiple documents. Journal of Educational Psychology,100(1), 209–222.CrossRefGoogle Scholar
  19. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  20. Dai, T., & Cromley, J. G. (2014). Changes in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approach. Contemporary Educational Psychology,39(3), 233–247.  https://doi.org/10.1016/j.cedpsych.2014.06.003.CrossRefGoogle Scholar
  21. Darling-Hammond, L. (2006). Constructing 21st-century teacher education. Journal of Teacher Education,57(3), 300–314.  https://doi.org/10.1177/0022487105285962.CrossRefGoogle Scholar
  22. Dreher, A., & Kuntze, S. (2014). Teachers’ professional knowledge and noticing: The case of multiple representations in the mathematics classroom. Educational Studies in Mathematics,88(1), 89–114.  https://doi.org/10.1007/s10649-014-9577-8.CrossRefGoogle Scholar
  23. Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development. Philadelphia, PA: Psychology Press.Google Scholar
  24. Evens, M., Elen, J., Larmuseau, C., & Depaepe, F. (2018). Promoting the development of teacher professional knowledge: Integrating content and pedagogy in teacher education. Teaching and Teacher Education,75, 244–258.  https://doi.org/10.1016/j.tate.2018.07.001.CrossRefGoogle Scholar
  25. Federal Ministry of Education and Research [BMBF] (Ed.). (2017). New approaches to teacher training: Incentives from the programme ‘Qualitaetsoffensive Lehrerbildung’. Berlin.Google Scholar
  26. Friesen, M., & Kuntze, S. (2016). Teacher students analyse texts, comics and video-based classroom vignettes regarding the use of representations—does format matter? In Proceedings of the 30th Annual Conference of the International Group for the Psychology of Mathematics Education (pp. 259–266). Presented at the PME 40, Szeged, Hungary.Google Scholar
  27. Gil, L., Bråten, I., Vidal-Abarca, E., & Strømsø, H. I. (2010). Summary versus argument tasks when working with multiple documents: Which is better for whom? Contemporary Educational Psychology,35(3), 157–173.  https://doi.org/10.1016/j.cedpsych.2009.11.002.CrossRefGoogle Scholar
  28. Goldhammer, F., Naumann, J., Stelter, A., Tóth, K., Rölke, H., & Klieme, E. (2014). The time on task effect in reading and problem solving is moderated by task difficulty and skill: Insights from a computer-based large-scale assessment. Journal of Educational Psychology,106(3), 608–626.  https://doi.org/10.1037/a0034716.CrossRefGoogle Scholar
  29. Graichen, M., Wegner, E., & Nückles, M. (2019). Wie können Lehramtsstudierende beim Lernen durch Schreiben von Lernprotokollen unterstützt werden, dass die Kohärenz und Anwendbarkeit des erworbenen Professionswissens verbessert wird? Unterrichtswissenschaft,47(1), 7–28.  https://doi.org/10.1007/s42010-019-00042-x.CrossRefGoogle Scholar
  30. Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. (2009). Teaching practice: A cross-professional perspective. Teachers College Record,111(9), 2055–2100.Google Scholar
  31. Hallam, S., & Prince, V. (2003). Conceptions of musical ability. Research Studies in Music Education,20(1), 2–22.  https://doi.org/10.1177/1321103X030200010101.CrossRefGoogle Scholar
  32. Hammerness, K., Darling-Hammond, L., Bransford, J., Berliner, D., Cochran-Smith, M., McDonald, M., et al. (2005). How teachers learn and develop. In L. Darling-Hammond & J. Bransford (Eds.), Preparing teachers for a changing world: What teachers should learn and be able to do (pp. 358–389). San Francisco: Jossey-Bass.Google Scholar
  33. Hand, V. (2012). Seeing culture and power in mathematical learning: Toward a model of equitable instruction. Educational Studies in Mathematics,80(1–2), 233–247.  https://doi.org/10.1007/s10649-012-9387-9.CrossRefGoogle Scholar
  34. Harr, N., Eichler, A., & Renkl, A. (2014). Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics. Educational Psychology,5, 924.  https://doi.org/10.3389/fpsyg.2014.00924.CrossRefGoogle Scholar
  35. Harr, N., Eichler, A., & Renkl, A. (2015). Integrated learning: Ways of fostering the applicability of teachers’ pedagogical and psychological knowledge. Educational Psychology, 6, 738.  https://doi.org/10.3389/fpsyg.2015.00738.CrossRefGoogle Scholar
  36. Haston, W., & Leon-Guerrero, A. (2008). Sources of pedagogical content knowledge: Reports by preservice instrumental music teachers. Journal of Music Teacher Education,17(2), 48–59.  https://doi.org/10.1177/1057083708317644.CrossRefGoogle Scholar
  37. Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.Google Scholar
  38. Hefter, M. H., ten Hagen, I., Krense, C., Berthold, K., & Renkl, A. (2019). Effective and efficient acquisition of argumentation knowledge by self-explaining examples: Videos, texts, or graphic novels? Journal of Educational Psychology. https://pub.uni-bielefeld.de/record/2933288.
  39. Hellmann, K., Kreutz, J., Schwichow, M., & Zaki, K. (Eds.). (2019). Kohärenz in der Lehrerbildung: Theorien, Modelle und empirische Befunde. Wiesbaden: Springer.Google Scholar
  40. Henning-Kahmann, J., & Hellmann, K. (2019). Entwicklung eines Fragebogens zur Erfassung der studentischen Kohärenzwahrnehmung im Lehramtsstudium. In K. Hellmann, J. Kreutz, M. Schwichow, & K. Zaki (Eds.), Kohärenz in der Lehrerbildung: Theorien, Modelle und empirische Befunde (pp. 33–50). Wiesbaden: Springer.  https://doi.org/10.1007/978-3-658-23940-4_3 Google Scholar
  41. Jacobs, V. R. (2017). Complexities in measuring teacher noticing: Commentary. In E. O. Schack, M. H. Fisher, & J. A. Wilhelm (Eds.), Teacher noticing: Bridging and broadening perspectives, contexts, and frameworks (pp. 273–279). Springer, Cham.  https://doi.org/10.1007/978-3-319-46753-5_16 CrossRefGoogle Scholar
  42. Janssen, N., & Lazonder, A. W. (2016). Supporting pre-service teachers in designing technology-infused lesson plans. Journal of Computer Assisted Learning,32(5), 456–467.  https://doi.org/10.1111/jcal.12146.CrossRefGoogle Scholar
  43. Joos, T. A., Liefländer, A., & Spörhase, U. (2019). Studentische Sicht auf Kohärenz im Lehramtsstudium. In K. Hellmann, J. Kreutz, M. Schwichow, & K. Zaki (Eds.), Kohärenz in der Lehrerbildung: Theorien, Modelle und empirische Befunde (pp. 51–67). Wiesbaden: Springer.  https://doi.org/10.1007/978-3-658-23940-4_4 Google Scholar
  44. Kaakinen, J. K., Hyönä, J., & Keenan, J. M. (2002). Perspective effects on online text processing. Discourse Processes,33(2), 159–173.  https://doi.org/10.1207/S15326950DP3302_03.CrossRefGoogle Scholar
  45. Kalinec-Craig, C. (2017). “Everything matters”: Mexican-American prospective elementary teachers noticing issues of status and participation while learning to teach mathematics. In Teacher Noticing: Bridging and Broadening Perspectives, Contexts, and Frameworks (pp. 215–229). New York, NY: Springer.  https://doi.org/10.1007/978-3-319-46753-5_13 CrossRefGoogle Scholar
  46. Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology,93(3), 579–588.  https://doi.org/10.1037/0022-0663.93.3.579.CrossRefGoogle Scholar
  47. Kerin, M., & Murphy, C. (2015). Exploring the impact of coteaching on pre-service music teachers. Asia-Pacific Journal of Teacher Education,43(4), 309–323.  https://doi.org/10.1080/1359866X.2015.1060293.CrossRefGoogle Scholar
  48. Kersting, N. B., Givvin, K. B., Thompson, B. J., Santagata, R., & Stigler, J. W. (2012). Measuring usable knowledge: Teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal,49(3), 568–589.  https://doi.org/10.3102/0002831212437853.CrossRefGoogle Scholar
  49. King, R. B. (2016). A fixed mindset leads to negative affect. Zeitschrift für Psychologie,225(2), 137–145.  https://doi.org/10.1027/2151-2604/a000290.CrossRefGoogle Scholar
  50. Kleickmann, T., & Hardy, I. (2019). Vernetzung professionellen Wissens angehender Lehrkräfte im Lehramtsstudium. Unterrichtswissenschaft,47(1), 1–6.  https://doi.org/10.1007/s42010-018-00035-2.CrossRefGoogle Scholar
  51. Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the development of teacher knowledge in a design seminar: Integrating content, pedagogy and technology. Computers & Education,49(3), 740–762.  https://doi.org/10.1016/j.compedu.2005.11.012.CrossRefGoogle Scholar
  52. König, J., Blömeke, S., Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers’ general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education,38, 76–88.  https://doi.org/10.1016/j.tate.2013.11.004.CrossRefGoogle Scholar
  53. Kramer, C., König, J., Kaiser, G., Ligtvoet, R., & Blömeke, S. (2017). Der Einsatz von Unterrichtsvideos in der universitären Ausbildung: Zur Wirksamkeit video- und transkriptgestützter Seminare zur Klassenführung auf pädagogisches Wissen und situationsspezifische Fähigkeiten angehender Lehrkräfte. Zeitschrift für Erziehungswissenschaft,20(1), 137–164.  https://doi.org/10.1007/s11618-017-0732-8.CrossRefGoogle Scholar
  54. Leahy, W., & Sweller, J. (2011). Cognitive load theory, modality of presentation and the transient information effect. Applied Cognitive Psychology,25(6), 943–951.  https://doi.org/10.1002/acp.1787.CrossRefGoogle Scholar
  55. Lee, M. Y., & Cross Francis, D. (2017). Investigating the relationships among elementary teachers’ perceptions of the use of students’ thinking, their professional noticing skills, and their teaching practices. The Journal of Mathematical Behavior, 51, 118–128.  https://doi.org/10.1016/j.jmathb.2017.11.007.CrossRefGoogle Scholar
  56. Lehman, S., & Schraw, G. (2002). Effects of coherence and relevance on shallow and deep text processing. Journal of Educational Psychology,94(4), 738–750.  https://doi.org/10.1037/0022-0663.94.4.738.CrossRefGoogle Scholar
  57. Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction,13(2), 157–176.  https://doi.org/10.1016/S0959-4752(02)00018-X.CrossRefGoogle Scholar
  58. Macrides, E., & Angeli, C. (2018). Domain-specific aspects of technological pedagogical content knowledge: Music education and the importance of affect. TechTrends,62(2), 166–175.  https://doi.org/10.1007/s11528-017-0244-7.CrossRefGoogle Scholar
  59. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist,38(1), 43–52.  https://doi.org/10.1207/S15326985EP3801_6.CrossRefGoogle Scholar
  60. McCrudden, M. T., Magliano, J. P., & Schraw, G. (2010). Exploring how relevance instructions affect personal reading intentions, reading goals and text processing: A mixed methods study. Contemporary Educational Psychology,35(4), 229–241.  https://doi.org/10.1016/j.cedpsych.2009.12.001.CrossRefGoogle Scholar
  61. McCrudden, M. T., & Schraw, G. (2006). Relevance and goal-focusing in text processing. Educational Psychology Review,19(2), 113–139.  https://doi.org/10.1007/s10648-006-9010-7.CrossRefGoogle Scholar
  62. Meschede, N., Fiebranz, A., Möller, K., & Steffensky, M. (2017). Teachers’ professional vision, pedagogical content knowledge and beliefs: On its relation and differences between pre-service and in-service teachers. Teaching and Teacher Education,66, 158–170.  https://doi.org/10.1016/j.tate.2017.04.010.CrossRefGoogle Scholar
  63. Millican, J. S. (2008). A new framework for music education knowledge and skill. Journal of Music Teacher Education,18(1), 67–78.  https://doi.org/10.1177/1057083708323146.CrossRefGoogle Scholar
  64. Millican, J. S. (2013). Describing instrumental music teachers’ thinking: Implications for understanding pedagogical content knowledge. Update: Applications of Research in Music Education,31(2), 45–53.  https://doi.org/10.1177/8755123312473761.CrossRefGoogle Scholar
  65. Millican, J. S., & Forrester, S. H. (2018). Core practices in music teaching: A delphi expert panel survey. Journal of Music Teacher Education,27(3), 51–64.  https://doi.org/10.1177/1057083717736243.CrossRefGoogle Scholar
  66. Müllensiefen, D., Harrison, P., Caprini, F., & Fancourt, A. (2015). Investigating the importance of self-theories of intelligence and musicality for students’ academic and musical achievement. Frontiers in Psychology, 6.  https://doi.org/10.3389/fpsyg.2015.01702.
  67. Narvaez, D., van den Broek, P., & Ruiz, A. B. (1999). The influence of reading purpose on inference generation and comprehension in reading. Journal of Educational Psychology,91(3), 488–496.  https://doi.org/10.1037/0022-0663.91.3.488.CrossRefGoogle Scholar
  68. Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology,84(4), 429–434.  https://doi.org/10.1037/0022-0663.84.4.429.CrossRefGoogle Scholar
  69. Paas, F., Tuovinen, J. E., Tabbers, H., & Gerven, P. W. M. V. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist,38(1), 63–71.  https://doi.org/10.1207/S15326985EP3801_8.CrossRefGoogle Scholar
  70. Patterson, M. M., Kravchenko, N., Chen-Bouck, L., & Kelley, J. A. (2016). General and domain-specific beliefs about intelligence, ability, and effort among preservice and practicing teachers. Teaching and Teacher Education,59, 180–190.  https://doi.org/10.1016/j.tate.2016.06.004.CrossRefGoogle Scholar
  71. Puffer, G., & Hofmann, B. (2016). FALKO-M. Zur Konzeptualisierung des Professionswissens von Musiklehrkräften. In J. Knigge & A. Niessen (Eds.), Musikpädagogik und Erziehungswissenschaft (pp. 107–120). Münster: Waxmann.Google Scholar
  72. Rattan, A., Good, C., & Dweck, C. S. (2012). “It’s ok—Not everyone can be good at math”: Instructors with an entity theory comfort (and demotivate) students. Journal of Experimental Social Psychology,48(3), 731–737.  https://doi.org/10.1016/j.jesp.2011.12.012.CrossRefGoogle Scholar
  73. Renkl, A., Mandl, H., & Gruber, H. (1996). Inert knowledge: Analyses and remedies. Educational Psychologist,31(2), 115–121.  https://doi.org/10.1207/s15326985ep3102_3.CrossRefGoogle Scholar
  74. Robnolt, V. J., Rhodes, J. A., Vasinda, S., & Haas, L. (2017). The use of ePortfolios in teacher education programs to support reflective practitioners in a digital world. In Deconstructing the Education-Industrial Complex in the Digital Age (pp. 104–115).  https://doi.org/10.4018/978-1-5225-2101-3.ch006.Google Scholar
  75. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review,16(2), 225–237.  https://doi.org/10.3758/PBR.16.2.225.CrossRefGoogle Scholar
  76. Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment,8(4), 350–353.  https://doi.org/10.1037/1040-3590.8.4.350.CrossRefGoogle Scholar
  77. Schneider, J., Bohl, T., Kleinknecht, M., Rehm, M., Kuntze, S., & Syring, M. (2016). Unterricht analysieren und reflektieren mit unterschiedlichen Fallmedien: Ist Video wirklich besser als Text? Unterrichtswissenschaft,44(4), 474–489.Google Scholar
  78. Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review,19(4), 469–508.  https://doi.org/10.1007/s10648-007-9053-4.CrossRefGoogle Scholar
  79. Seidel, T., & Stürmer, K. (2014). Modeling and measuring the structure of professional vision in preservice teachers. American Educational Research Journal,51(4), 739–771.  https://doi.org/10.3102/0002831214531321.CrossRefGoogle Scholar
  80. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review,57(1), 1–22.  https://doi.org/10.17763/haer.57.1.j463w79r56455411.CrossRefGoogle Scholar
  81. Spinath, B., & Schöne, C. (2003). Subjektive Überzeugungen zu Bedingungen von Erfolg in Lern- und Leistungskontexten und deren Erfassung. In J. Stiensmeier-Pelster & F. Rheinberg (Eds.), Diagnostik von Motivation und Selbstkonzept (pp. 15–27). Göttingen: Hogrefe.Google Scholar
  82. Spychiger, M. (2017). Teaching toward the promotion of students´ musical self-concept. In R. Girdzijauskiene & M. Stakelum (Eds.), Creativity and Innovation. European Perspectives on Music Education (Vol. 7, pp. 133–146). Esslingen: Helbling.Google Scholar
  83. Stahnke, R., Schueler, S., & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: A systematic review of empirical mathematics education research. ZDM Mathematics Education,48(1–2), 1–27.  https://doi.org/10.1007/s11858-016-0775-y.CrossRefGoogle Scholar
  84. Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261–292.  https://doi.org/10.1007/s10648-019-09465-5.CrossRefGoogle Scholar
  85. Thibaut, L., Knipprath, H., Dehaene, W., & Depaepe, F. (2018). How school context and personal factors relate to teachers’ attitudes toward teaching integrated STEM. International Journal of Technology and Design Education, 28(3), 631–651.  https://doi.org/10.1007/s10798-017-9416-1.CrossRefGoogle Scholar
  86. Tröbst, S., Kleickmann, T., Depaepe, F., Heinze, A., & Kunter, M. (2019). Effects of instruction on pedagogical content knowledge about fractions in sixth-grade mathematics on content knowledge and pedagogical knowledge. Unterrichtswissenschaft,47(1), 79–97.  https://doi.org/10.1007/s42010-019-00041-y.CrossRefGoogle Scholar
  87. Tröbst, S., Kleickmann, T., Heinze, A., Bernholt, A., Rink, R., & Kunter, M. (2018). Teacher knowledge experiment: Testing mechanisms underlying the formation of preservice elementary school teachers’ pedagogical content knowledge concerning fractions and fractional arithmetic. Journal of Educational Psychology,110(8), 1049–1065.  https://doi.org/10.1037/edu0000260.CrossRefGoogle Scholar
  88. van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist,43(1), 16–26.  https://doi.org/10.1080/00461520701756248.CrossRefGoogle Scholar
  89. Voss, T., Kunter, M., & Baumert, J. (2011). Assessing teacher candidates’ general pedagogical/psychological knowledge: Test construction and validation. Journal of Educational Psychology,103(4), 952–969.  https://doi.org/10.1037/a0025125.CrossRefGoogle Scholar
  90. Wäschle, K., Lehmann, T., Brauch, N., & Nückles, M. (2015). Prompted journal writing supports preservice history teachers in drawing on multiple knowledge domains for designing learning tasks. Peabody Journal of Education,90(4), 546–559.  https://doi.org/10.1080/0161956X.2015.1068084.CrossRefGoogle Scholar
  91. Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review,92(4), 548–573.  https://doi.org/10.1037/0033-295X.92.4.548.CrossRefGoogle Scholar
  92. Wiley, J., & Voss, J. F. (1999). Constructing arguments from multiple sources: Tasks that promote understanding and not just memory for text. Journal of Educational Psychology,91(2), 301–311.  https://doi.org/10.1037/0022-0663.91.2.301.CrossRefGoogle Scholar
  93. Yeager, D. S., & Walton, G. M. (2011). Social-psychological interventions in education: They’re not magic. Review of Educational Research,81(2), 267–301.  https://doi.org/10.3102/0034654311405999.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Educational and Developmental PsychologyUniversity of FreiburgFreiburgGermany
  2. 2.Department of Educational Development and ResearchMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Institute of MusicUniversity of Education FreiburgFreiburgGermany
  4. 4.Institute of Mathematics EducationUniversity of Education FreiburgFreiburgGermany
  5. 5.Department of Educational ScienceUniversity of FreiburgFreiburgGermany

Personalised recommendations