Advertisement

Instructional Science

, Volume 42, Issue 5, pp 715–745 | Cite as

Mathematics learning with multiple solution methods: effects of types of solutions and learners’ activity

  • Cornelia S. Große
Article

Abstract

It is commonly suggested to mathematics teachers to present learners different methods in order to solve one problem. This so-called “learning with multiple solution methods” is also recommended from a psychological point of view. However, existing research leaves many questions unanswered, particularly concerning the effects of different types of solution methods and different degrees of learner’s activity. In this context, two experiments were conducted. In Experiment 1, a 2 × 3-factorial design was implemented, with the first factor concerning multiple versus uniform solutions and the second factor addressing different combinations of formal and informal solution methods. No “multiple solutions effect” was found. An integration of informal methods did not affect learning outcomes; however, it significantly reduced the subjective difficulty of the problems. Then, in Experiment 2, the effectiveness of multiple versus uniform solutions and of measures to foster an active processing was examined using a 2 × 3-factorial design (“number of solutions”: multiple versus uniform; “activity”: complete examples versus incomplete examples versus example-problem pairs). The “multiple” conditions significantly outperformed the “uniform” conditions, and complete examples and example-problem pairs significantly outperformed incomplete examples. Based on the results of Experiment 1 and 2, preconditions under which multiple solutions can improve learning outcomes are discussed.

Keywords

Mathematics learning Multiple solution methods Formal and informal solutions Incomplete examples Example-problem pairs 

Notes

Acknowledgments

This work was supported by the Central Research Development Fund (CRDF) of the University of Bremen and by the German Research Foundation (DFG) under contract number GR2706/4-1. The author would like to thank these institutions for their support.

References

  1. Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198. doi: 10.1016/j.learninstruc.2006.03.001.CrossRefGoogle Scholar
  2. Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. The Journal of the Learning Sciences, 11, 25–61.CrossRefGoogle Scholar
  3. Anghileri, J., Beishuizen, M., & Van Putten, K. (2002). From informal strategies to structured procedures: Mind the gap! Educational Studies in Mathematics, 49, 149–170.CrossRefGoogle Scholar
  4. Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. W. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70, 181–214. doi: 10.3102/00346543070002181.CrossRefGoogle Scholar
  5. Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Combining fading with prompting fosters learning. Journal of Educational Psychology, 95, 774–783. doi: 10.1037/0022-0663.95.4.774.CrossRefGoogle Scholar
  6. Bandura, A., & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88, 87–99. doi: 10.1037/0021-9010.88.1.87.CrossRefGoogle Scholar
  7. Berger, R. (1989). Prozent- und Zinsrechnen in der HauptschuleDidaktische Analysen und empirische Ergebnisse zu Schwierigkeiten, Lösungsverfahren und Selbstkorrekturverhalten der Schüler am Ende der Hauptschulzeit [Calculation of percentage and interest in secondary school—Didactic analyses and empirical results concerning difficulties, solution methods and self-correction behavior of students at the end of secondary school]. Regensburg: S. Roderer.Google Scholar
  8. Bortz, J. (1993). Statistik für Sozialwissenschaftler [Statistics for social scientists]. Berlin: Springer.Google Scholar
  9. Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship. Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction (pp. 453–493). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Common Core State Initiative. (2012). Mathematics. Retrieved January 21, 2014, from http://www.corestandards.org/Math.
  11. Deci, E. L., & Ryan, R. M. (1993). Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik [The self-determination theory of motivation and its relevance for pedagogy]. Zeitschrift für Pädagogik, 39, 223–238.Google Scholar
  12. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684–704.CrossRefGoogle Scholar
  13. Große, C. S. (2005). Lernen mit multiplen Lösungswegen [Learning with multiple solution methods]. Münster: Waxmann.Google Scholar
  14. Große, C. S., & Renkl, A. (2006). Effects of multiple solution methods in mathematics learning. Learning and Instruction, 16, 122–138. doi: 10.1016/j.learninstruc.2006.02.001.CrossRefGoogle Scholar
  15. Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112. doi: 10.3102/003465430298487.CrossRefGoogle Scholar
  16. Johanning, D. I. (2004). Supporting the development of algebraic thinking in middle school: A closer look at students’ informal strategies. Journal of Mathematical Behavior, 23, 371–388.CrossRefGoogle Scholar
  17. Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31.CrossRefGoogle Scholar
  18. Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. The Journal of the Learning Sciences, 13, 129–164. doi: 10.1207/s15327809jls1302_1.CrossRefGoogle Scholar
  19. Koedinger, K. R., & Tabachneck, H. J. M. (1994). Two strategies are better than one: Multiple strategy use in word problem solving. Presented at the annual meeting of the American Educational Research Association, New Orleans, LA.Google Scholar
  20. Math Warehouse. (n.d.). System of linear equations in 2 variables. Retrieved January 21, 2014, from http://www.mathwarehouse.com/algebra/linear_equation/systems-of-equation/index.php.
  21. Metz, M. L. (2010). Using GAISE and NCTM Standards as frameworks for teaching probability and statistics to preservice elementary and middle school mathematics teachers. Journal of Statistics Education [online], 18. Retrieved January 20, 2014, from http://www.amstat.org/publications/jse/v18n3/metz.pdf.
  22. NCTM. (2014). Principles and standards for school mathematics. Retrieved January 21, 2014, from http://www.nctm.org/standards/content.aspx?id=312.
  23. Neubrand, J., & Neubrand, M. (2000). Effekte multipler Lösungsmöglichkeiten: Beispiele aus einer japanischen Mathematikstunde [Effects of multiple solutions: Examples of a Japanese mathematics lesson]. In C. Selter & G. Walther (Eds.), Mathematikdidaktik als design science (pp. 148–158). Leipzig: Klett.Google Scholar
  24. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4.CrossRefGoogle Scholar
  25. Prediger, S. (2004). “Darf man denn das so rechnen?”—Vielfalt im Mathematikunterricht [“May we use this solution method?”—Diversity in mathematics education]. Friedrich Jahresheft, 22, 86–89.Google Scholar
  26. Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, 1–29.CrossRefGoogle Scholar
  27. Renkl, A. (1999). Learning mathematics from worked-out examples: Analyzing and fostering self-explanations. European Journal of Psychology of Education, 14, 477–488.CrossRefGoogle Scholar
  28. Renkl, A., Atkinson, R. K., & Große, C. S. (2004). How fading worked solution steps works—A cognitive load perspective. Instructional Science, 32, 59–82.CrossRefGoogle Scholar
  29. Renkl, A., Atkinson, R. K., & Maier, U. H. (2000). From studying examples to solving problems: Fading worked-out solution steps helps learning. In L. Gleitman & A. K. Joshi (Eds.), Proceedings of the 22nd annual conference of the Cognitive Science Society (pp. 393–398). Mahwah, NJ: Erlbaum.Google Scholar
  30. Renkl, A., Atkinson, R. K., Maier, U. H., & Staley, R. (2002). From example study to problem solving: Smooth transitions help learning. Journal of Experimental Education, 70, 293–315.CrossRefGoogle Scholar
  31. Rheinberg, F. (2004). Motivationsdiagnostik [Diagnostic of motivation]. Göttingen: Hogrefe.Google Scholar
  32. Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99, 561–574. doi: 10.1037/0022-0663.99.3.561.CrossRefGoogle Scholar
  33. Rittle-Johnson, B., & Star, J. R. (2009). Compared to what? The effects of different comparisons on conceptual knowledge and procedural flexibility for equation solving. Journal of Educational Psychology, 101, 529–544. doi: 10.1037/a0014224.CrossRefGoogle Scholar
  34. Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 101, 836–852. doi: 10.1037/a0016026.CrossRefGoogle Scholar
  35. Rittle-Johnson, B., Star, J. R., & Durkin, K. (2012). Developing procedural flexibility: Are novices prepared to learn from comparing procedures? British Journal of Educational Psychology, 82, 436–455. doi: 10.1111/j.2044-8279.2011.02037.x.CrossRefGoogle Scholar
  36. Sedlmeier, P. (1999). Improving statistical reasoning—Theoretical models and practical implications. Mahwah, NJ: Erlbaum.Google Scholar
  37. Sedlmeier, P., & Gigerenzer, G. (2001). Teaching Bayesian reasoning in less than two hours. Journal of Experimental Psychology: General, 130, 380–400. doi: 10.1037/0096-3445.130.3.380.CrossRefGoogle Scholar
  38. Sjuts, J. (2002). Unterschiedliche mentale Konstruktionen beim Aufgabenlösen—Eine Fallstudie zur Ma-thematik als Werkzeug zur Wissenspräsentation [Different mental constructions for problem solving—A case study for mathematics as a tool for knowledge presentation]. Journal für Mathematik-Didaktik, 23, 106–128.CrossRefGoogle Scholar
  39. Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (1991). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in illstructured domains. Educational Technology, 31, 24–33.Google Scholar
  40. Spiro, R. J., & Jehng, J. C. (1990). Cognitive flexibility and hypertext: Theory and technology for the nonlinear and multidimensional traversal of complex subject matters. In D. Nix & R. J. Spiro (Eds.), Cognition, education, and multimedia: Exploring ideas in high technology (pp. 163–205). Hillsdale, NJ: Erlbaum.Google Scholar
  41. Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18, 565–579. doi: 10.1016/j.learninstruc.2007.09.018.CrossRefGoogle Scholar
  42. Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. Journal of Experimental Child Psychology, 102, 408–426. doi: 10.1016/j.jecp.2008.11.004.CrossRefGoogle Scholar
  43. Stark, R. (1999). Lernen mit Lösungsbeispielen. Der Einfluss unvollständiger Lösungsschritte auf Beispiel-elaboration, Motivation und Lernerfolg [Learning with worked examples. The influence of incomplete examples on example elaboration, motivation, and learning results]. Göttingen: Hogrefe.Google Scholar
  44. Stark, R., Gruber, H., Renkl, A., & Mandl, H. (2000). Instruktionale Effekte einer kombinierten Lernme-thode: Zahlt sich die Kombination von Lösungsbeispielen und Problemlöseaufgaben aus? [Instructional effects of a combined learning method: Does a combination of worked examples and problems pay off?]. Zeitschrift für Pädagogische Psychologie, 14, 206–218.CrossRefGoogle Scholar
  45. Staub, F. C., & Reusser, K. (1995). The role of presentational structures in understanding and solving mathematical word problems. In C. A. Weaver, S. Mannes, & C. R. Fletcher (Eds.), Discourse comprehension. Essays in honor of Walter Kintsch (pp. 285–305). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  46. Stern, E. (1993). What makes certain arithmetic word problems involving the comparison of sets so difficult for children? Journal of Educational Psychology, 85, 7–23.CrossRefGoogle Scholar
  47. Tabachneck, H. J. M., Koedinger, K. R., & Nathan, M. J. (1994). Toward a theoretical account of strategy use and sense-making in mathematics problem solving. Proceedings of the 16th annual conference of the Cognitive Science Society (pp. 836–841). Hillsdale, NJ: Erlbaum.Google Scholar
  48. Trafton, J. G., & Reiser, B. J. (1993). The contributions of studying examples and solving problems to skill acquisition. In M. Polson (Ed.), Proceedings of the 15th annual conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.Google Scholar
  49. Van Amerom, B. A. (2003). Focusing on informal strategies when linking arithmetic to early algebra. Educational Studies in Mathematics, 54, 63–75.CrossRefGoogle Scholar
  50. Van Merriënboer, J. J. G. (1990). Strategies for programming instruction in high school: Program completion vs. program generation. Journal of Educational Computing Research, 6, 265–285.CrossRefGoogle Scholar
  51. Van Merriënboer, J. J. G., & de Crook, M. B. M. (1992). Strategies for computer-based programming instruction: Program completion vs. program generation. Journal of Educational Computing Research, 8, 365–394.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Group of Computer Architecture, Institute of Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations