Instructional Science

, Volume 33, Issue 1, pp 73–95 | Cite as

Supporting learning with interactive multimedia through active integration of representations

  • Daniel Bodemer
  • Rolf Ploetzner
  • Katrin Bruchmüller
  • Sonja Häcker


When learners explore dynamic and interactive visualisations they are often not able to interact with them in a systematic and goal-oriented way. Frequently, even supporting learners in processes of discovery learning does not lead to better learning outcomes. This can be due to missing pre-requisite knowledge such as the coherent mental integration of the pictorial and symbolic sources of information. In order to support learners in this process, we encouraged them to interactively and externally relate different static sources of information to each other before exploring dynamic and interactive visualisations. We evaluated the benefit of this instructional support in two experimental studies concerning the domains of statistics and mechanics. It revealed that the active integration of static representations before processing dynamic visualisations resulted in better performance and can provide a basis for a more systematic and goal-oriented experimentation behaviour during simulation-based discovery learning.


cognitive load coherence formation discovery learning dynamic visualisations interactive learning environments multiple representations simulations structure mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth, S. 1999The functions of multiple representationsComputers and Education33131152Google Scholar
  2. Ainsworth, S., Bibby, P.A., Wood, D.J. 2002Examining the effects of different multiple representational systems in learning primary mathematicsJournal of the Learning Sciences112562Google Scholar
  3. Ainsworth, S., Labeke, N. 2004Multiple forms of dynamic representationLearning and Instruction14241255Google Scholar
  4. Blaschke, K., Heuer, D. 2000Dynamik-Lernen mit multimedial-experimentell unterstütztem Werkstatt-Unterricht [Learning dynamics in multimedia projects]Physik in der Schule3816Google Scholar
  5. Bodemer, D., Ploetzner, R., Feuerlein, I., Spada, H. 2004The active integration of information during learning with dynamic and interactive visualizationsLearning and Instruction14325341Google Scholar
  6. Brünken, R., Steinbacher, S., Schnotz, W., Leutner, D. 2001Mentale Modelle und Effekte der Präsentations- und Abrufkodalität beim Lernen mit Multimedia [Mental models and the effects of presentation and retrieval mode in multimedia learning]Zeitschrift für Pädagogische Psychologie151527Google Scholar
  7. Chandler, P., Sweller, J. 1991Cognitive load theory and the format of instructionCognition and Instruction8293332Google Scholar
  8. Chandler, P., Sweller, J. 1992The split-attention effect as a factor in the design of instructionBritish Journal of Educational Psychology62233246Google Scholar
  9. Jong, T., Joolingen, W.R. 1998Scientific discovery learning with computer simulations of conceptual domainsReview of Educational Research68179201Google Scholar
  10. Gentner, D. 1983Structure-mapping: A theoretical framework for analogyCognitive Science7155170Google Scholar
  11. Gentner, D., Markman, A.B. 1997Structure mapping in analogy and similarityAmerican Psychologist524556Google Scholar
  12. Kalyuga, S., Chandler, P., Sweller, J. 1999Managing split-attention and redundancy in multimedia instructionApplied Cognitive Psychology13351371Google Scholar
  13. Klahr, D., Dunbar, K. 1988Dual space search during scientific reasoningCognitive Science12148Google Scholar
  14. Kozma, R. 2003The material features of multiple representations and their cognitive and social affordances for science understandingLearning and Instruction13205226Google Scholar
  15. Kozma, R.B., Russell, J., Jones, T., Marx, N., Davis, J. 1996

    The use of multiple linked representations to facilitate science understanding

    Vosniadou, S.Corte, E.Glaser, R.Mandl, H. eds. International Perspectives on the Design of Technology Supported Learning EnvironmentsErlbaumHillsdale, NJ4161
    Google Scholar
  16. Larkin, J.H., Simon, H.A. 1987Why a diagram is (sometimes) worth ten thousands wordsCognitive Science116599Google Scholar
  17. Leutner, D. 1993Guided discovery learning with computer-based simulation games: effects of adaptive and non-adaptive instructional supportLearning and Instruction3113132Google Scholar
  18. Lowe, R.K. 1999Extracting information from an animation during complex visual learningEuropean Journal of Psychology of Education14225244Google Scholar
  19. Lowe, R.K. 2003Animation and learning: Selective processing of information in dynamic graphicsLearning and Instruction13157176Google Scholar
  20. Mayer, R.E. 1997Multimedia learning: Are we asking the right questionsEducational Psychologist32119Google Scholar
  21. Mayer, R.E. 2001Multimedia LearningCambridge University PressNYGoogle Scholar
  22. Njoo, M., Jong, T. 1993

    Supporting exploratory learning by offering structured overviews of hypotheses

    Towne, D.M.Jong, T.Spada, H. eds. Simulation-based Experiential LearningSpringer PublishersBerlin207223
    Google Scholar
  23. Ploetzner, R., Bodemer, D., Feuerlein, I. 2001

    Facilitating the mental integration of multiple sources of information in multimedia learning environments

    Montgomerie, C.Viteli, J. eds. Proceedings of the World Conference on Educational Multimedia, Hypermedia & TelecommunicationsAssociation for the Advancement of Computing in EducationNorfolk, VA15011506
    Google Scholar
  24. Ploetzner, R., Bodemer,D. & Neudert, S. (in press) Successful and unsuccessful use of dynamic visualisations in instructional texts. In R.K. Lowe & W. Schnotz, eds, Learning with Animations. New York: Cambridge University Press.Google Scholar
  25. Reigeluth, C.M., Schwartz, E. 1989An instructional theory for the design of computer-based simulationsJournal of Computer-Based Instruction16110Google Scholar
  26. Reimann, P. 1991Detecting functional relations in a computerized discovery environmentLearning and Instruction14565Google Scholar
  27. Rieber, L.P., Tzeng, S.-C., Tribble, K. 2004Discovery learning, representation, and explanation within a computer-based simulation: Finding the right mixLearning and Instruction14307323Google Scholar
  28. Schauble, L., Glaser, R., Raghavan, K., Reiner, M. 1991Causal models and experimentation strategies in scientific reasoningThe Journal of the Learning Sciences1201239Google Scholar
  29. Schnotz, W., Bannert, M. 1999Einflüsse der Visualisierungsform auf die Konstruktion mentaler Modelle beim Text- und Bildverstehen [Influence of the type of visualization on the construction of mental models during picture and text comprehension]Zeitschrift für Experimentelle Psychologie46217236Google Scholar
  30. Schnotz, W., Bannert, M. 2003Construction and interference in learning from multiple representationLearning and Instruction13141156Google Scholar
  31. Schnotz, W., Boeckheler, J., Grzondziel, H. 1999Individual and co-operative learning with interactive animated picturesEuropean Journal of Psychology of Education14245265Google Scholar
  32. Seufert, T. 2003Supporting coherence formation in learning from multiple representationsLearning and Instruction13227237Google Scholar
  33. Swaak, J., Joolingen, W.R., Jong, T. 1998Supporting simulation-based learning: The effects of model progression and assignments on definitional and intuitive knowledgeLearning and Instruction8235252Google Scholar
  34. Sweller, J. 1988Cognitive load during problem solving: Effects on learningCognitive Science12257285Google Scholar
  35. Sweller, J., Merriënboer, J.J.G., Paas, F.G.W.C. 1998Cognitive architecture and instructional designEducational Psychology Review10251296Google Scholar
  36. Tarmizi, R.A., Sweller, J. 1988Guidance during mathematical problem solvingJournal of Educational Psychology80424436Google Scholar
  37. Joolingen, W.R., Jong, T. 1991Supporting hypothesis generation by learners exploring an interactive computer simulationInstructional Science20389404Google Scholar
  38. Joolingen, W.R., Jong, T. 1997An extended dual search space model of scientific discovery learningInstructional Science25307346Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Daniel Bodemer
    • 1
  • Rolf Ploetzner
    • 2
  • Katrin Bruchmüller
    • 3
  • Sonja Häcker
    • 4
  1. 1.Department of Applied Cognitive Psychology and Media PsychologyUniversity of TübingenTübingenGermany
  2. 2.University of EducationFreiburgGermany
  3. 3.Knowledge Media Research CenterTübingenGermany
  4. 4.Knowledge Media Research CenterTübingenGermany

Personalised recommendations