Impact of high-concentrate diets with cottonseed associated with calcium lignosulfonate on the metabolic, productive, and carcass characteristics of feedlot lambs

  • 26 Accesses


This study aimed to evaluate the metabolic, productive, and carcass parameters of feedlot lambs fed high-concentrate diets with cottonseed associated with calcium lignosulfonate. Treatments consisted of diets including whole cottonseed, crushed cottonseed, whole cottonseed with lignosulfonate (100 g/kg), crushed cottonseed with lignosulfonate (100 g/kg), and a control diet without cottonseed. Thirty ½ Dorper ½ Santa Inês, non-castrated male lambs with an average live weight of 24.9 ± 3.6 kg and an average age of 3.5 months were evaluated in a completely randomized design. There was no effect (P > 0.05) on the intakes of dry matter, organic matter, crude protein, and non-fibrous carbohydrates. The crushing of cottonseed and association with lignosulfonate increased (P < 0.01) the intake and digestibility of ether extract. No effect was observed (P > 0.05) for the concentrations of urine and plasma urea N, which averaged 616.2 and 108.6 mg/dL, respectively. There was a change (P < 0.01) in nitrogen balance for digested N in g/day. There was no effect (P > 0.05) on the urinary concentration of purine derivatives, except for uric acid excretions (P < 0.05). Lignosulfonate associated with cottonseed provided an average daily gain of 0.293 kg/day, which was higher than the 0.226 kg/day obtained without lignosulfonate, but lower than control (0.302 kg/day), which also showed higher values of carcass yield. High-concentrate diets formulated without cottonseed improve lamb production performance. The use of high-concentrate diets with cottonseed associated with calcium lignosulfonate provides greater weight gains in lambs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.


  1. Association of Official Anaytical Chemists, AOAC. 1990. Official Methods of Analysis, (15th ed. Washington).

  2. Bagaldo, A.R., Miranda, G.S., Soares Júnior, M.S.F., Araújo, F.L., Matoso, R.V.M., Chizzotti, M.L., Bezerra, L.R., Oliveira, R.L., 2019. Effect of Licuri cake supplementation on performance, digestibility, ingestive behavior, carcass traits and meat quality of grazing lambs. Small Ruminant Research, 177, 18–24.

  3. Behan, A.A., Loh, T.C., Fakurazi, S., Kaka, U., Kaka, A., Samsudin, A.A., 2019. Effects of Supplementation of Rumen Protected Fats on Rumen Ecology and Digestibility of Nutrients in Sheep. Animals, 9, 1–18.

  4. Brasil, 1977. Ministério da Agricultura, Pecuária e Abastecimento. Regulamento de Inspeção Industrial e Sanitária de Produtos de Origem Animal, Brasília.

  5. Campos, F.S., Carvalho, G.G.P., Santos, E.M., Araújo, G.G.L., Gois, G.C., Rebouças, R.A., Magalhães, A.L.R., Oliveira, J.S., Voltolini, T.V., Carvalho, B.M.A., Perazzo, A.F., 2019. South African Journal of Animal Science., 49, 113–130.

  6. Cartaxo, F.Q., Sousa, W.H., Cezar, M.F., Costa, R.G., Cunha, M.G.G., Gonzaga Neto, S., 2011. Carcass traits determined by ultrasonography in real time and after slaughter of lambs finished in feedlot with different levels of energy in the diet. Brazilian Journal of Science, 40, 160–167.

  7. Chanjula, P., Cherdthong, A., 2018. Effects of crude glycerin from waste vegetable oil in diets on performance and carcass characteristics of feedlot goats. Asian-Australasian Journal of Animal Science, 31, 514–521.

  8. Chen, X.B., Gomes, M.J., 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives. An overview of the technical details. International feed resources unit, (Bucksburn: Rowett research institute).

  9. Corey, A.M., Wamsley, K.G.S., Winowiski, T.S., Moritz, J.S., 2014. Effects of calcium lignosulfonate, mixer-added fat, and feed form on feed manufacture and broiler performance. Jounal of Applied Poultry Research, 23, 418–428.

  10. Detmann, E., Pina, D.S., Valadares Filho, S.C., Campos, J.M.S., Paulino, M.F., Oliveira, A.S. de, Silva, P.A., Henriques, L.T., 2006c. Estimation of crude protein digestible fraction in cattle diets under Brazilian conditions. Brazilian Journal of Science, 35, 2101–2109.

  11. Detmann, E., Sousa, M.A., Valadares Filho, S.C., Queiroz, A.C., Berchielli, T.T., Saliba, E. O.S. Cabral, L.S., Pina, D. S., Ladeira, M.M., Azevedo, J.A.G., 2012. Métodos para análise de alimentos - INCT - Ciência Animal, (Visconde do Rio Branco: Suprema).

  12. Detmann, E., Valadares Filho, S.C., Henriques, L.T., Pina, D. S., Paulino, M.F., Valadares, R.F.D., Chizzotti, M.L., Magalhães, K.A., 2006a. Estimation of nonfiber carbohydrates digestibility in cattle using the Lucas test approach under Brazilian conditions. Brazilian Journal of Science, 35, 1479–1486.

  13. Detmann, E., Valadares Filho, S.C., Henriques, L.T., Pina, D. S., Paulino, M.F., Magalhães, A.L.R., Figueiredo, D.M., Porto, M. O., Chizzotti, M.L., 2007. Reparameterization of the model based on Surface Law to predict the digestible fraction of neutral detergent fiber in Brazilian cattle. Brazilian Journal of Science, 36, 155–164.

  14. Detmann, E., Valadares Filho, S.C., Pina, D.S., Campos, J.M.S., Paulino, M.F., Oliveira, A.S., Silva, P.A., 2006b. Estimation of ether extract digestibility in diets of ruminants: a model under Brazilian conditions. Brazilian Journal of Science, 35, 1469–1478.

  15. Fiorentini, G., Carvalho, I.P.C., Messana, J.D., Roberta, C.C., Castagnino, P.S., Lage, J.F., Arcuri, P.B., Berchielli, T.T., 2015. Effect of Lipid Sources with Different Fatty Acid Profiles on Intake, Nutrient Digestion and Ruminal Fermentation of Feedlot Nellore Steers. Asian-Australasian Journal of Animal Sciences, 28, 1583–1591.

  16. Khitrin, K.S., Fuks, S.L., Khitrin, S.V., Kazienkov, S.A., Meteleva, D.S., 2012. Lignin utilization options and methods. Russian Journal of General Chemistry, 82, 977–984.

  17. Lei, Y.G., Li, X.Y., Wang, Y.Y., Li, Z.Z., Chen, Y.L., Yang, Y.X., 2017. Determination of ruminal dry matter and crude protein degradability and degradation kinetics of several concentrate feed ingredients in cashmere goat. Journal of Applied Animal Research, 46, 134–140.

  18. Licitra, G., Hernandez, T.M., Van Soest, P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57, 347–358.

  19. Loor, J.J., Elolimy, A.A., McCann, J.C., 2016. Dietary impacts on rumen microbiota in beef and dairy production. Animal Frontiers, 6, 22–29.

  20. Mamuad, L.L., Lee, S.S., Lee, S.S., 2019. Recent insight and future techniques to enhance rumen fermentation in dairy goats. Asian-Australasian Journal of Animal Sciences, 32, 1321–1330.

  21. Marín, A.L.M., Hernández, M.P., Alba, L.M.P., Pardo, D.C., Sigler, A.I.G., Castro, G.G., 2013. Fat addition in the diet of dairy ruminants and its effects on productive parameters. Revista Colombiana de Ciencias Pecuarias, 26, 69–78.

  22. Mertens, D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 85, 1217–1240.

  23. Myer, R.O., Hersom, M.J., 2018. Whole cottonseed for beef cattle rations. AN34. Gainesville, FL: Animal Sciences Department, Institute of Food and Agricultural Sciences Extension.

  24. Neves, C.A., Santos, W.B.R., Santos, G.T.D., Silva, D.C., Jobim, C.C., Santos, F.S., Visentainer, J.V., Petit, H.V., 2009. Production performance and milk composition of dairy cows fed extruded canola seeds treated with or without lignosulfonate. Animal Feed Science and Technology, 154, 83–89.

  25. Nascimento, C.O., Santos, S.A., Pina, D.S., Tosto, M.S.L., Pinto, L.F.B., Eiras, D.N., Assis, D.Y.C., Perazzo, A.F., Araújo, M.L.G.M.L., Azevêdo, J.A.G., Mourão, G.B., Carvalho, G.G.P., 2020. Effect of roughage-to-concentrate ratios combined with different preserved tropical forages on the productive performance of feedlot lambs. Small Ruminant Research, 182, 15–21

  26. National Research Council – NRC, 2001. Nutrient requirements of small ruminants. (7ed. Washington: The National Academy Press).

  27. National Research Council – NRC, 2007. Nutrient requirements of small ruminants: Sheep. Goats. Cervids. And New World Camelids, (Washington: The National Academy Press).

  28. Oliveira, A.P.D., Bagaldo, A.R., Loures, D.R.S., Bezerra, L.R., Moraes, S.A., Yamamoto, S.M., Araújo, F.L., Cirne, L.G., Oliveira, R.L., 2018. Effect of ensiling gliricidia with cassava on silage quality, growth performance, digestibility, ingestive behavior and carcass traits in lambs Animal Feed Science and Technology, 241, 198–209.

  29. Paim, T.P., Viana, P., Tilburg, M.F.V., Moura, A.A., Souza, J.R., McManus, C., Abdalla, A.L., Louvandini, H., 2019. Feeding effects of cottonseed and its co-products on the meat proteome from ram lambs. Scientia Agricola, 76, 463–472.

  30. Palmquist, D.L., Mattos, W.R.S., 2006. Metabolismo de lipídios. In: T.T. Berchielli, A.V. Pires and S.G. Oliveira (eds), Nutrição de ruminantes. (Jaboticabal: Funep).

  31. Palmquist, D.L., Mattos, W.R.S., 2011. Metabolismo de Lipídios. In: T.T. Berchielli, A.V. Pires and S.G. Oliveira (eds), Nutrição de Ruminantes. (2ed. Jaboticabal: Funep).

  32. Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8, 13–27.

  33. Peixoto, E.L.T., Mizubuti, I.Y., Ribeiro, E.L.A., Moura, E.S., Pereira, E.S., Prado, O.P.P., Carvalho, L.N., Pires, K.A., 2017. Residual frying oil in the diets of sheep: intake, digestibility, nitrogen balance and ruminal parameters. Asian-Australasian Journal of Animal Sciences, 30, 51–56.

  34. Pereira, E.S., Pereira, M.W.F., Arruda, P.C., Cabras, L.S., Oliveira, R.L., Mizubuti, I.I., Pinto, A.P., Campos, A.C.N., Gadelha, C.R.F., Carneiro, M.S.S., 2016. Animal Physiology and Animal Nutrition, 100, 723–730.

  35. Piani, B., Fabro, C., Susmel, P., 2004. Measurement of Purine Derivates and Creatinine in Urine By HPLC. In: H.P.S. Makkar, and X.B. Chen (eds), Estimation of Microbial Protein Supply in Ruminants Using Urinary Purine Derivates. (Norwell: Kluwer Academic Publishers).

  36. Piona, M.N.M., Cabral, L.S., Zervoudakis, J.T., Abreu, J.G., Galati, R.L., Caetano, G.G.G.P., Silva, A.R., 2012. Whole cottonseed levels in feedlot lambs diets. Revista Brasileira de Saúde e Produção Animal, 13, 110–122.

  37. Rennó, L.N., Valadares Filho, S.C., Paulino, M.F., Leão, M.I., Valadares, R.F.D., Rennó, F.P., Paixão, M.L., 2008. Urea levels in diet for steers of four genetic groups: ruminal parameters, plasma urea, urea and creatinine excretions. Brazilian Journal of Animal Science, 37, 556–562.

  38. Rufino Junior, J., Carvalho, D.M.G., Souza, J.G., Cabral, L.S., Silva, J.J., Ribeiro, M.D., Arnoldo, T.L.Q., Oliveira, A.S., Soares, J.Q., 2015. Whole cottonseed in diets without roughage for feedlot lambs. Semina: Ciências Agrárias, 36, 2727–2738.

  39. Santos W.B.R., Santos G.T., Silva-Kazama D.C., Cecato U., Marchi F.E., Visentainer J.V., Petit H.V., 2011. Production performance and milk composition of grazing dairy cows fed pelleted or non-pelleted concentrates treated with or without lignosulfonate and containing ground sunflower seeds. Animal Feed Science and Technology, 169, 167–175.

  40. SAS, 2014. Version 9.4., (Cary: SAS Institute Inc.).

  41. Sniffen, C.J., O’Connor, J.D., Van Soest, P.S., Fox, D.G., Russell, J.B., 1992. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. Journal of Animal Science, 70, 3562–3577.

  42. Toledo, M.C.F., Kuznesof, P.M., 2008. Calcium lignosulfonate chemical and technical assessment. Proceedings of the Joint FAO/WHO Expert Committee on Food Additives, 69, 1-8. Rome.

  43. Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polyssacarides in relation to animal nutrition. Journal of Animal Science, 74, 3583–3597.

  44. Weiss, W.P., 1999. Energy prediction equations for ruminant feeds. Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, 61, 176-185.

Download references

Author information

Correspondence to Luís Gabriel Alves Cirne.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cirne, L.G.A., de Carvalho, G.G.P., Viana, P.T. et al. Impact of high-concentrate diets with cottonseed associated with calcium lignosulfonate on the metabolic, productive, and carcass characteristics of feedlot lambs. Trop Anim Health Prod (2020) doi:10.1007/s11250-019-02194-5

Download citation


  • Co-product
  • Feed additive
  • Feedlot
  • Ruminants