Advertisement

Tropical Animal Health and Production

, Volume 51, Issue 8, pp 2187–2192 | Cite as

Effects of bacteriocin and organic acid on growth performance, small intestine histomorphology, and microbiology in Japanese quails (Coturnix coturnix japonica)

  • Ahmet Onder UstundagEmail author
  • Mursel Ozdogan
Regular Articles
  • 74 Downloads

Abstract

In this study, 600 1-day-old Japanese quail chicks (Coturnix coturnix japonica) were used to investigate the effects of bacteriocin and organic acids on performance and intestinal histomorphology and microbiology. Chicks were allocated to 6 groups, i.e., control, Bac150 (150 mg/kg bacteriocin), Bac300 (300 mg/kg bacteriocin), OA (3 g/kg organic acid blend), Bac150+OA (150 mg/kg bacteriocin + 3 g/kg organic acid blend), and Bac300+OA (300 mg/kg bacteriocin + 3 g/kg organic acid blend) group. The trial lasted 35 days. At the end of the trial, a statistical increase was not observed in the performance parameters of chicks with feed additives. However, 300 mg/kg bacteriocin + 3 g/kg organic acid supplementation given together has been found to have more positive effects on intestinal microbiology and histomorphology (P < 0.05). Consequently, it is understood that the use of these feed additives together will achieve better results.

Keywords

Quail Bacteriocin Organic acid Growth performance Intestinal parameters 

Notes

Funding information

This study was financed under a project supported by the Scientific Research Projects Fund of Adnan Menderes University (project no: ZRF-12016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Açıkgöz, Z,, Bayraktar, H,, Altan, Ö, 2011. Effects of formic acid administration in the drinking water on performance, intestinal microflora and carcass contamination in male broilers under high ambient temperature, Asian-Australasian Journal of Animal Sciences, 24(1), 96–102CrossRefGoogle Scholar
  2. AOAC, 1997. Official Methods of Analysis. Association of Analytical Chemists, 16th ed. Washington D.C.Google Scholar
  3. Bonos, E.M., Christaki, E.V., Florou-Paneri, P.C., 2010. Performance and carcass characteristics of Japanese quail as affected by sex or mannan oligosaccharides and calcium propionate, South African Journal of Animal Science, 40(3), 173–184CrossRefGoogle Scholar
  4. Cao, G.T., Zeng, X.F., Chen, A.G., Zhou, L., Zhang, L., Xiao, Y.P., Yang, C.M., 2013. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response and cecal microflora in broiler chickens challenged with Escherichia coli K88, Poultry Science, 92(11), 2949–2955CrossRefGoogle Scholar
  5. Chen, C.Y., Yu, C., Chen, S.W., Chen, B.J., Wang, H.T., 2013. Effect of yeast with bacteriocin from rumen bacteria on growth performance, caecal flora, caecal fermentation and immunity function of broiler chicks, Journal of Agricultural Science, 151(2), 287–297CrossRefGoogle Scholar
  6. Chen, C.Y., Chen, S.W., Wang, H.T., 2017. Effect of supplementation of yeast with bacteriocin and Lactobacillus culture on growth performance, cecal fermentation, microbiota composition, and blood characteristics in broiler chickens, Asian-Australasian Journal of Animal Sciences, 30(2), 211–220CrossRefGoogle Scholar
  7. Fazilat, H., Kheiri, F., Faghani, M., 2014. Effects of using commercial GLOBACID® acidifier supplementation on growth performance and some haematological parameters in Japanese quail (Coturnix japonica), Research Opinions in Animal & Veterinary Sciences, 4(11), 622–625Google Scholar
  8. FEFANA, 2014. Organic Acids in Animal Nutrition. Fefana Publication, Brussel, Belgium. ISBN 978-2-9601289-2-5Google Scholar
  9. Gabriel, I., Lessire, M., Mallet, S., Guillot, J.F., 2006. Microflora of the digestive tract: Critical factors and consequences for poultry, World’s Poultry Science Journal, 62, 499–511Google Scholar
  10. Ghasemi, H.A., Salamat, H.A., Hajkhodadadi, I., Farahani, A.H.K., 2014. Effects of dietary organic acid blend supplementation on performance, intestinal morphology and antibody-mediated immunity in broiler chickens, Acta Advances in Agricultural Sciences, 2(10), 64–74Google Scholar
  11. Ghazalah, A.A., Atta, A.M., Kout, E., Moustafa, M. EL., Shata, R.F.H., 2011. Effect of dietary supplementation of organic acids on performance, nutrients digestibility and health of broiler chicks, International Journal of Poultry Science, 10(3), 176–184CrossRefGoogle Scholar
  12. Giannenas, I., Papaneophytou, C.P., Tsalie, E., Pappas, I., Triantafillou, E., Tontis, D., Kontopidis, G.A., 2014. Dietary supplementation of benzoic acid and essential oil compounds affects buffering capacity of the feeds, performance of turkey poults and their antioxidant status, pH in the digestive tract, ıntestinal microbiota and morphology, Asian-Australasian Journal of Animal Sciences, 27(2) 225–236CrossRefGoogle Scholar
  13. Islam, M.Z., Khandaker, Z.H., Chowdhury, S.D., Islam, K.M.S., 2008. Effect of citric acid and acetic acid on the performance of broilers, Journal of the Bangladesh Agricultural University, 6(2), 315–320CrossRefGoogle Scholar
  14. Józefiak, D., Sip, A., Rawski, M., Steiner, T., Rutkowski, A., 2011. The dose response effects of liquid and lyophilized Carnobacterium divergens AS7 bacteriocin on the nutrient retention and performance of broiler chickens, Journal of Animal and Feed Sciences, 20(1), 401–411CrossRefGoogle Scholar
  15. Józefiak, D., Sip, A., Rutkowski, A., Rawski, M., Kaczmarek, S., Wołuń-Cholewa, M., Engberg, R.M., Højberg, O., 2012. Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens, Poultry Science, 91(8), 1899–1907CrossRefGoogle Scholar
  16. Józefiak, D., Kierończyk, B., Juśkiewicz, J., Zduńczyk, Z., Rawski, M., Długosz, J., Sip, A., Højberg, O., 2013. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens, Plos One, 8(12), 1–11CrossRefGoogle Scholar
  17. Kierończyk, B., Pruszyńska-Oszmałek, E., Świątkiewicz, S., Rawski, M., Długosz, J., Engberg, R.M., Józefiak, D., 2016. The nisin improves broiler chicken growth performance and interacts with salinomycin in terms of gastrointestinal tract microbiota composition, Journal of Animal and Feed Sciences, 25, 309–316CrossRefGoogle Scholar
  18. Král, M., Angelovičová, M., Alfaig, E., Bučko, O., Walczycka, M., 2014. Influence of Bacillus subtilis and acetic acid on Cobb500 intestinal microflora, Scientific Papers: Animal Science and Biotechnologies, 47(2), 22–25Google Scholar
  19. Lauková, A., Strompfová, V., Plachá, I., Čobanová, K., Faix, S., Simonová, M.P., 2015. Beneficial effect of enterocin M-producing, probiotic strain Enterococcus faecium AL41 in model experiment with hens, Global Journal of Animal Scientific Research, 3(1), 206–213Google Scholar
  20. Loh, T.C., Choe, D.W., Foo, H.L., Sazili, A.Q., Bejo, M.H., 2014. Effects of feding different postbiotic metabolite combinations produced by Lactobacillus plantarum strains on egg quality and production performance, faecal parameters and plasma cholesterol in laying hens, BMC Veterinary Research, 10, 149CrossRefGoogle Scholar
  21. National Research Council 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, D.C.Google Scholar
  22. Pan, D. and Yu, Z., 2014. Intestinal microbiome of poultry and its interaction with host and diet, Gut Microbes, 5(1), 108–119CrossRefGoogle Scholar
  23. Peyman, F., Yahya, E., Habib, A.S., Naser, M.S., Alireza, A., 2014. Effects of organic acids supplement on performance and gut parameters in male Japanese quail (Coturnix coturnix), Biological Forum – An International Journal, 6(2), 127–134Google Scholar
  24. Salim, H.M., Kang, H.K., Akter, N., Kim, D.W., Kim, J.H., Kim, M.J., Na, J.C., Jong, H.B., Choi, H.C., Suh, O. S., Kim, W.K., 2013. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens, Poultry Science, 92(8), 2084–2090CrossRefGoogle Scholar
  25. Salmanzadeh, M., Bostanabad, J.G., Arva, S., 2014. The effects of in ovo injection of butyric acid into quails breeder eggs on hatchability, growth performance, development of the gastrointestinal tract, and carcass traits of Japanese quails, Bulletin of Environment, Pharmacology and Life Sciences, 3(3), 126–130Google Scholar
  26. SAS 1999. The SAS System SAS Institute Inc., Cary, NC, USA, Version 8 Copyright © 1999.Google Scholar
  27. Schyns, G., Serra, C.R., Henriques, A.O., Arguelles-Arias, A., Joris, B., Fickers, P., 2013. Isolation of the antimicrobial cyclic peptide subtilosin a from a gut-associated Bacillus subtilis strain, American Journal of Biochemistry and Biotechnology, 9(3), 307–317CrossRefGoogle Scholar
  28. Seifi, S., Sayrafi, R., Khoshbakht, R., Gilani, A., 2015. Effects of dietary acetic acid on intestinal microbiota, serum components, internal organs and performance of broilers, Global Journal of Animal Scientific Research, 3(2), 536–543Google Scholar
  29. Shen, X., Yi, D., Ni, X., Zeng, D., Jing, B., Lei, M., Bian, Z., Zeng, Y., Li, T. and Xin, J., 2014. Effects of Lactobacillus plantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers, Canadian Journal of Microbiology, 60, 193–202CrossRefGoogle Scholar
  30. Song, J., Xiao, K., Ke, Y.L., Jiao, L.F., Hu, C.H., Diao, Q.Y., Shi, B., Zou, X.T., 2014. Effect of probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress, Poultry Science, 93(3), 581–588CrossRefGoogle Scholar
  31. Stern, N.J., Svetoch, E.A., Eruslanov, B.V., Perelygin, V.V., Mitsevich, E.V., Mitsevich, I.P., Pokhilenko, V.D., Levchuk, V.P., Svetoch, O.E., Seal, B.S., 2006. Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Camphylobacter jejuni, Antimicrobial Agents and Chemotherapy, 50(9), 3111–3116CrossRefGoogle Scholar
  32. Sultan, A., Ullah, T., Khan, S., Khan, R.U., 2015. Effect of organic acid supplementation on the performance and ileal microflora of broiler during finishing period, Pakistan Journal of Zoology, 47(3), 635–639Google Scholar
  33. Thanh, N.T., Loh, T.C., Foo, H.L., Hair-Bejo, M., Azhar, B.K., 2009. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers, British Poultry Science, 50(3), 298–306CrossRefGoogle Scholar
  34. Thompson, K.L. and Applegate, T.J., 2006. Feed withdrawal alters small-intestinal morphology and mucus of broilers, Poultry Science, 85, 1535–1540CrossRefGoogle Scholar
  35. Wang, H.T., Shih, W.Y., Chen, S.W., Wang, S.Y., 2015. Effect of yeast with bacteriocin from rumen bacteria on laying performance, blood biochemistry, faecal microbiota and egg quality of laying hens, Journal of Animal Physiology and Animal Nutrition, 99(6), 1105–1115CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Agriculture, Animal Science DepartmentAdnan Menderes UniversityCakmarTurkey

Personalised recommendations