Tropical Animal Health and Production

, Volume 51, Issue 7, pp 1943–1952 | Cite as

Effect of diet and type of pregnancy on plasma metabolic response in sheep and its further effect on lamb performance

  • J. G. Carcamo
  • L. Arias-Darraz
  • C. Alvear
  • P. Williams
  • M. A. GallardoEmail author
Regular Articles


This trial evaluated the individual and interactional effects of diet and type of pregnancy (twin or single) on plasma metabolic response in ewes and their lambs from late pre-partum to late post-partum. Thus, a flock of 18 Ile de France breed sheep, consisting of 8 twin-bearing and 10 single-bearing ewes, were allocated to one of two groups according to their diet, either based on ad libitum naturalized pasture hay (NPH) or red clover hay (RCH), from d 45 pre-partum to d 60 post-partum. Plasma samples were collected at different times to determine albumin, cholesterol, total protein and urea, plus glucose and β-hydroxybutyrate (BHB) concentration in ewes. The data was processed using the lme4 package for R, and SPSS Statistics 23.0 for Windows. The results showed that both diet and type of pregnancy influenced the metabolic profile in ewes, showing an inverse relationship between single- and twin-bearing ewes regarding glucose and especially BHB proportions from pre-partum to birth. During post-partum, higher urea concentrations were observed in twin- and single-bearing ewes fed RCH in contrast to those fed NPH, as a result of the higher-quality forage offered to ewes. Regarding lambs, the diet and type of pregnancy influenced the total protein and urea levels, where an inverse relationship at birth and early post-partum between albumin and cholesterol vs. total protein and urea was detected, reflecting a trend (P value between 0.06 and 0.07) to a better performance by groups of single lambs, especially those from single-bearing ewes fed RCH. Finally, under the conditions of this study, the maternal diet and type of pregnancy influenced the plasma metabolic response in ewes and their lambs, affecting the lamb performance especially at birth.


Metabolic indicators Ewes Twin Lambs Red clover 



The authors would like to thank Dr. Lucía Azócar for her collaboration in this study. This study was financed by FONDECYT grants 3160059 and 1150934, and FONDAP grant 15110027.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of animal rights

The methodology used in this study was approved by the Committee for the Ethical Use of Animals in Experiments of the Universidad Austral de Chile.


  1. Broderick, G.A., 2018. Utilization of protein in red clover and alfalfa silages by lactating dairy cows and growing lambs. Journal of Dairy Science, 101, 1–16.CrossRefGoogle Scholar
  2. Bruss, M.L., 2008. Lipids and ketones. In: Kaneko JJ, JW Harvey, ML Bruss (eds). Clinical Biochemistry of Domestic Animals Academic Press. San Diego, pp 81–115. DOI: CrossRefGoogle Scholar
  3. Cal-Pereyra, L., Benech, A., González-Montaña, J.R., Acosta-Dibarrat, J., Da Silva, S., Martín, A., 2015. Changes in the metabolic profile of pregnant ewes to an acute feed restriction in late gestation. New Zealand Veterinary Journal, 63 (3), 141–146.CrossRefGoogle Scholar
  4. Can, A., Denek, N., Şeker, M., 2007. Effect of replacing wheat straw with almond hull and shell in diets on nutrient digestibility and blood parameters of goat. Journal of Applied Animal Research, 32, 181–183.CrossRefGoogle Scholar
  5. Capper, J.L., Wilkinson, R.G., Mackenzie, A.M., Sinclair, L.A., 2006. Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep. Journal of Nutrition, 136, 397–403.CrossRefGoogle Scholar
  6. Caroprese, M., Marzano, A., Marino, R., Gliatta, G., Muscio, A., Sevi, A., 2010. Flaxseed supplementation improves fatty acid profile of cow milk. Journal of Dairy Science, 93 (6), 2580–2588.CrossRefGoogle Scholar
  7. Castañeda-Gutierrez, E., Overton, T., Butler, W., Bauman, D., 2005. Dietary suplements of two doses of calcium salts of conjugated linoleic acid during the transition period and early lactation. Journal of Dairy Science, 88 (3), 1078–1089.CrossRefGoogle Scholar
  8. Cattaneo, L., Barberis, F. C., Stangaferro, M.L., Signorini, P., Ruiz, M.F., Zimmermann, R., BO, G.A., Hein, G.J., Ortega, H.H., 2014. Evaluación de indicadores metabólicos y bioquímicos sanguíneos en vacas en lactancia con Enfermedad Quística Ovárica. Revista InVet (B. Aires), 15 (1–2), 7–15.Google Scholar
  9. Cavender, C.P., Turley, S.D., Dietschy, J.M., 1995. Sterol metabolism in fetal, newborn, and suckled lambs and their response to cholesterol after weaning. American Journal of Physiology, 269 (2), 331–340. DOI: Google Scholar
  10. Chichlowski, M., Schroeder, J., Park, C., Keller, W., Schimek, D., 2005. Altering the fatty acids in milk fat by including canola seed in dairy catthe diets. J. Dairy Science, 88 (9), 3084–3094.CrossRefGoogle Scholar
  11. Chilliard, Y., Ferlay, A., Faulconnier, Y., Bonnet, M., Rouel, J., Bocquier, F., 2000. Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants. The Proceedings of the Nutrition Society Nutrition Society, 59, 127–34.CrossRefGoogle Scholar
  12. Claro, D., 2006. En Claro D (ed). El potencial de la producción intensiva de carne ovina en Chile. INIA, Chile, pp 1–29.Google Scholar
  13. Costa, R.G., Ribeiro, N.L., Nobre, P.T., Carvalho, F.F.R., Medeiros, A.N., Cruz, G.R.B., Freire, L.F.S., 2018. Biochemical and hormonal parameters of lambs using guava (Psidium guajava L.) agro-industrial waste in the diet. Tropical Animal Health and production 50(1), 217–221.CrossRefGoogle Scholar
  14. Danso, A.S., Morel, P.C.H., Kenyon, P.R., Blair, H.T., 2016. Relationships between prenatal ewe traits, milk production, and preweaning performance of twin lambs. Journal of Animal Science, 94, 3527–3539.CrossRefGoogle Scholar
  15. David, D.B., Poli, C.H.E.C., Azevedo, E.B., Fernandes, M.A.M., Carvalho, P.C.F., Jochims, F., Pimentel, C.M.M., 2012. Potential response to supplementation of ewe lambs grazing natural pastures over winter. Small Ruminant Research, 105, 22–28.CrossRefGoogle Scholar
  16. Dewhurst, R.J., Delaby, L., Moloney, A., Boland, T., Lewis, E., 2009. Nutritive value of forage legumes used for grazing and silage. Irish Journal of Agricultural and Food Research, 48 (2), 167–187.Google Scholar
  17. Dillon, P., Berry, D., Evans, R., Buckley, F., Horan, B., 2006. Consequences of genetic selection for increased milk production in European seasonal pasture based systems of milk production. Livestock Science, 99 (2), 141–158.CrossRefGoogle Scholar
  18. Eckersall, P.D., 2008. Proteins, proteomics, and the dysproteinemias. In: Kaneko JJ, JW Harvey, ML Bruss (eds). Clinical biochemistry of domestic animals. Academic Press, San Diego, pp 117- 155. DOI: CrossRefGoogle Scholar
  19. Gallardo, M.A., Pulido, R., Gallo, C., 2011. Fatty acid composition of Longissimus dorsi muscle of Suffolk Down lambs fed on different dryland forages. Chilean Journal of Agricultural Research, 71 (4), 566–571. DOI: CrossRefGoogle Scholar
  20. Gallardo, M.A., Noro, M., De la Barra, R., Pulido, R., 2014. Metabolic profile in Chilota growing lambs grazing Calafatal. Tropical Animal Health and Production, 46, 685–689.CrossRefGoogle Scholar
  21. Garnsworthy, P.C., 2007. Body condition score in dairy cows: targets for production and fertility. In, Recent advances in animal nutrition, 2006 (ed. PC Garnsworthy and J Wiseman), Nottingham University Press, Nottingham, pp 61–86. DOI: Google Scholar
  22. González-Montaña, J.R., Rejas-López, J., 1995. Toxemia de la gestación. Medicina Veterinaria, 12 (9), 513–522.Google Scholar
  23. Hammond, A.C., 2006. Update on BUN and MUN as a guide for protein supplementation in cattle, US Department of Agriculture, Florida.Google Scholar
  24. Herdt, T.H., 2000. Variability characteristics and test selection in herd-level nutritional and metabolic profile testing. Veterinary Clinics of North America: Food Animal Practice, 16, 387–403.Google Scholar
  25. Kaneko, J.J., 1989. Clinical biochemistry of domestic animals. New York, USA: Academic Press, pp 885. DOI: Google Scholar
  26. Katsoulos, P.D., Athanasiou, L.V., Karatzia, M.A., Giadinis, N., Karatzias, H., Boscos, C., Polizopoulou, Z.S., 2017. Comparison of biuret and refractometry method for the serum total proteins measurement in ruminants. Veterinary Clinical Pathology, 46 (4), 620–624.CrossRefGoogle Scholar
  27. Kitessa, S.M., Peake, D., Bencini, R., Williams, A.J., 2003. Fish oil metabolism in ruminants III. Transfer of n-3 polyunsaturated fatty acids (PUFA) from tuna oil into sheep’s milk. Animal Feed Science and Technology, 108, 1–14.CrossRefGoogle Scholar
  28. Le Blanc, S., 2006. Monitoring programs for transition dairy cows. In Proceedings of the 26th World Buiatrics Congress. Nice, France, 460–472.Google Scholar
  29. Lee, M.R.F., Winters, A.L., Scollan, N.D., Dewhurst, R.J., Theodorou, M.K., Minchin, F.R., 2004. Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. Journal of the Science of Food and Agriculture, 84, 1639–1645.CrossRefGoogle Scholar
  30. Maas, J., Pearson, E.G., 2009. Hepatic lipidosis. In: Smith BP (Eds). Large animal internal medicine. 4th ed. St. Louis, USA: Mosby Elsevier 912–918.Google Scholar
  31. Macías-Cruz, U., Vicente-Pérez, R., Mellado, M., Correa-Calderón, A., Meza-Herrera, C.A., Avendaño-Reyes, L., 2017. Maternal undernutrition during the pre- and post-conception periods in twin-bearing hairsheep ewes: effects on fetal and placental development at mid-gestation. Tropical Animal Health and Production 49 (7), 1393–1400.CrossRefGoogle Scholar
  32. Moallem, U., Rozov A., Gootwine, E., Honig, H., 2012. Plasma concentrations of key metabolites and insulin in late- pregnant ewes carrying 1 to 5 fetuses. Journal of Animal Science, 90, 318–324.CrossRefGoogle Scholar
  33. Mohammadi, V., Anassori, E., Jafari, S., 2016. Measure of energy related biochemical metabolites changes during peri-partum period in Makouei breed sheep. Veterinary Research Forum, 7 (1) 35–39.Google Scholar
  34. Ndlovu, T., Chimonyo, M., Okoh, A.I., Muchenje, V., Dzama, K., Raats, J.G., 2007. Assessing the nutritional status of beef cattle: current practices and future prospects. African Journal of Biotechnology, 6 (24), 2727–2734.CrossRefGoogle Scholar
  35. Noro, M., Wittwer, F., 2012. Relationships between liver ureagenesis and gluconeogenesis in ruminants fed with a high nitrogen diet. Veterinaria México, 43 (2), 143–154.Google Scholar
  36. Noro, M., Vargas, V., Pulido, R.G., Wittwer, F., 2006. Efecto del tipo de concentrado sobre indicadores sanguíneos del metabolismo de energía y de proteínas en vacas lecheras en pastoreo primaveral. Archivos de Medicina Veterinaria, 38, 227–232.CrossRefGoogle Scholar
  37. Noro, M., Bertinat, R., Yañez, A., Slebe, J.C., Wittwer, F., 2012. Non protein nitrogen supplementation increases gluconeogenic capacity in sheep. Livestock Science, 148, 243–248.CrossRefGoogle Scholar
  38. NRC, 2007. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Natl. Acad. Press, Washington, DC. DOI: Google Scholar
  39. Odens, L., Burgos, R., Innocenti, M., Van Baale, M., Baumgard, 2007., Effects of varying doses of suplemental conjugated linoleic acid on production and energetic variables during the transition period. Journal of Dairy Science, 90 (1), 293–305.CrossRefGoogle Scholar
  40. Or-Rashid, M.M., Fisher, R., Karrow, N., AlZahal, O., McBride, B.W., 2010. Fatty acid profile of colostrum and milk of ewes supplemented with fish meal and the subsequent plasma fatty acid status of their lambs. Journal of Animal Science, 88 (6), 2092–2102.CrossRefGoogle Scholar
  41. Osgerby, J.C., Wathes, D.C., Howard, D., Gadd, T.S., 2002. The effect of maternal undernutrition on ovine fetal growth. Journal of Endocrinology, 1, 131–141.CrossRefGoogle Scholar
  42. Otto, F., Baggasse, P., Bogin, E., Harun, M., Vilela, F., 2000. Biochemical blood profile of Angoni cattle in Mozambique. Israel Veterinary Medical Association, 55 (3), 1–9.Google Scholar
  43. Palacios, I., 2008. Mortalidad neonatal en corderos en la región de Magallanes. Trabajo presentado para optar al título de Ingeniero Agrónomo, Universidad de Magallanes, Punta Arenas, Chile, pp 20.Google Scholar
  44. Pereyra, L., Benech, A., Da Silva, S., Martin, A., Gonzalez-Montaña, J.R., 2011. Metabolismo energético en ovejas gestantes esquiladas y no esquiladas sometidas a dos planos nutricionales. Efecto sobre las reservas energéticas de sus corderos. Archivos de Medicina Veterinaria, 43, 277–285.CrossRefGoogle Scholar
  45. Rad, M.I., Rouzbehan, Y., Rezaei, J., 2016. Effect of dietary replacement of alfalfa with urea-treated almond hulls on intake, growth, digestibility, microbial nitrogen, nitrogen retention, ruminal fermentation, and blood parameters in fattening lambs. Journal of Animal Science, 94, 349–358.CrossRefGoogle Scholar
  46. Radostits, O.M., Gay, C.C., Blood, D.C., Hinchliffe, K.W., 2007. Veterinary medicine. A text book of the diseases of cattle, sheep, goats and horses. 10th ed. W. B. Saunders Ltd., London.Google Scholar
  47. Reynolds, C.K., Aikman, P.C., Lupoli, B., Humphries, D.J., Beever, D.E., 2003. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science, 86, 1201–1217.CrossRefGoogle Scholar
  48. Rook, J.S., 2000. Pregnancy toxemia of ewes, does, and beef cows. Veterinary Clinics of North America. Food Animal Practice, 16, 293–317.CrossRefGoogle Scholar
  49. Rukkwamsuk, T., 2010. A field study on negative energy balance in periparturient dairy cows kept in small-holder farms: Effect on milk production and reproduction. African Journal of Agricultural Research, 5 (23), 3157–3163. DOI: Google Scholar
  50. Solaiman, S.J., Thomas, Y., Dupre, B.R., Min, N., Gurung, T., Terrill, H., Haenlein, G.F.W., 2010. Effect of feeding sericea lespedeza (Lespedeza cuneata) on growth performance, blood metabolites, and carcass characteristics of Kiko crossbred male kids. Small Ruminant Research, 93, 149–156.CrossRefGoogle Scholar
  51. Tadich, N., 2002. Fisiopatología del cordero recién nacido. En: Tadich N (ed). Salud y Producción Ovina. Universidad Austral de Chile, Valdivia, Chile, pp 15–34.Google Scholar
  52. Taghipour, B., Seifi, H.A., Mohri, M., Farzaneh, N., Naserian, A., 2010. Variations of energy related biochemical metabolites during periparturition period in fat-tailed Baloochi breed sheep. Iranian Journal of Veterinary Science and Technology, 2 (2), 85–92.Google Scholar
  53. Thatcher, W., Santos, J., Silvestre, F., Kim, I., Staples, C., 2010. Perspective on physiological/endocrine and nutritional factors influencing fertility in postpartum dairy cows. Reproduction in Domestic Animals, 45 (3), 2–14.CrossRefGoogle Scholar
  54. Wittwer, F., 2012. Manual de Patología Clínica Veterinaria. 2nd ed. Imprenta América. Valdivia, Chile.Google Scholar
  55. Zachut, M., Arieli, A., Lehrer, H., Livshitz, L., Yakoby, S., Moallem, U., 2010. Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue and milk fat. Journal of Dairy Science, 93 (12), 5877–5889.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Bioquímica y Microbiología, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  2. 2.FONDAP CenterInterdisciplinary Center for Aquaculture Research, INCARValdiviaChile
  3. 3.Escuela de Medicina Veterinaria, Facultad de CienciasUniversidad MayorSantiagoChile
  4. 4.Departamento de Producción Animal, Facultad de AgronomíaUnoversidad de ConcepciónChillánChile

Personalised recommendations