Superovulatory response and embryo quality in Katahdin ewes treated with FSH or FSH plus eCG during non-breeding season

  • C. Luna-PalomeraEmail author
  • U. Macías-Cruz
  • F. Sánchez-Dávila
Short Communications


The aim of this study was to evaluate the effect of a co-treatment of follicle-stimulating hormone (FSH) plus equine chorionic gonadotrophin (eCG) on serum insulin and insulin-like growth factor 1 (IGF-1) concentrations, superovulatory response, ovulatory rate, and number and production of embryos in Katahdin breed ewes during the non-breeding season. Twenty Katahdin ewes were synchronized with progestagens (CIDR) and assigned to two superovulation treatments (n = 10): (1): ewes treated with 200 mg ewe−1 of FSH from day 5 to 8 after CIDR insertion at decreasing doses every 12 h (FSH group) and (2) ewes treated as FSH group plus 300 IU of eCG on day 5 after CIDR insertion (FSH + eCG group). Estrous behavior was monitored and direct mating was performed. On days − 7 (CIDR insertion), 0 (CIDR withdrawal), and 7 (embryo recovery), blood samples were collected to determine serum hormone concentrations. Co-treatment with eCG (FSH group) did not affect (P > 0.05) serum hormone levels. Superovulation response, ovulation rate, recovery rate, fertilization, and number of embryos were also similar (P > 0.05) between treatments. Compared with FSH group, FSH + eCG ewes had lower (P < 0.05) number of transferable embryos and higher (P < 0.05) number of oocyte and a tendency to increase the number of degenerated embryos (P = 0.07). Overall results suggest that the administration of eCG is not beneficial either to improve the ovulatory response or the amount of transferable embryos in Katahdin ewes superovulated with a protocol using progesterone and FSH at decreasing doses.


Superovulation Ovarian response MOET Katahdin ewes 



The authors would like to thank the Faculty Improvement Program (PROMEP) for financing project UJAT-CA-221, as well as Mr. H. Pérez for granting the ewes for this experiment.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest. They also confirm that this manuscript has been read and that all of them have approved the order of authors listed in the manuscript.

Statement of animal rights

Animal handling procedures were performed in accordance with the Mexican Official Standard (NOM-051-ZOO-1995: Humanitarian care of animals during its mobilization, and NOM-062-ZOO-1999: Technique specifications to production, care, and use of laboratory animals), and procedures of Ethics Committee of the University Juarez Autonoma of Tabasco.


  1. Amiridis, G.S. and Cseh, S. 2012. Assisted reproductive technologies in the reproductive management of small ruminants. Animal Reproduction Science, 130, 152–161.CrossRefGoogle Scholar
  2. Arredondo, A.J., González, A., Vázques-Armijo, J.F., Ledezma-Torres, A., Bernal-Barragan, H. and Sánchez-Dávila, F. 2015. Status and implementation of reproductive technologies in goats in emerging countries. African Journal of Biotechnology, 14, 719–727.CrossRefGoogle Scholar
  3. Barrett, D.M.W, Bartlewski, P.M, Batista-Arteaga, M., Symington, A. and Rawlings N.C. 2004. Ultrasound and endocrine evaluation of the ovarian response to a single dose of 500 IU of eCG following a 12-day treatment with progestogen-releasing intravaginal sponges in the breeding and nonbreeding seasons in ewes. Theriogenology, 61, 311–27.CrossRefGoogle Scholar
  4. Bettencourt, E.M., Bettencourt, C.M., Chagas, J., Silva, E., Ferreira, P., Manito, C.I., Matos, C.M., Romão, R.J. and Rocha, A. 2008. Effect of season and gonadotrophin preparation on superovulatory response and embryo quality in Portuguese Black Merinos. Small Ruminant Research, 74, 134–139.CrossRefGoogle Scholar
  5. Chun, S.Y., Billig, H., Tilly, J.L., Furuta, I., Tsafriri, A. and Hsueh, A.J. 1994. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology, 135, 1845–1853. CrossRefGoogle Scholar
  6. Driancourt, M.A. and Fry, R.C. 1992. Effect of superovulation with pFSH or PMSG on growth and maturation of the ovulatory follicles in sheep. Animal Reproduction Science, 27, 279–292. Scholar
  7. Dupont, J., Scaramuzzi, R. and Reverchon, M. 2014. The effect of nutrition and metabolic status on the development of follicles, oocytes and embryos in ruminants. Animal, 8, 1031–1044.CrossRefGoogle Scholar
  8. Forcada, F., Ait Amer-Meziane, M., Abecia, J.A., Maurel, M.C., Cebrián-Pérez, J.A., Muiño-Blanco, T., Asenjo, B., Vázquez, M.I. and Casao, A. 2011. Repeated superovulation using a simplified FSH/eCG treatment for in vivo embryo production in sheep. Theriogenology, 75, 769–776.CrossRefGoogle Scholar
  9. García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México, UNAM, México. Disponible en: [Accessed July 16, 2018].
  10. Gastélum-Delgado, M.A., Avendaño-Reyes, L., Álvarez-Valenzuela, F.D., Correa-Calderón, A., Meza-Herrera, C.A., Mellado, M. and Macías-Cruz, U. 2015. Comportamiento de estro circanual en ovejas Pelibuey bajo condiciones áridas del Noroeste de México. Revista Mexicana de Ciencias Pecuarias, 6:109–118.CrossRefGoogle Scholar
  11. Greve, T., Callesen, H., Hyttel, H., Hoier, R. and Assey, R. 1995. The Effects of Exogenous Gonadotropins on Oocyte and Embryo Quality in Cattle. Theriogenology, 43: 41–50.CrossRefGoogle Scholar
  12. INEGI. 2014. Instituto Nacional de Estadística Geografía e Informática. Available at: [Accessed February 11, 2015].
  13. Kaye, P.L. 1997. Preimplantation growth factor physiology. Review Reproduction, 2, 121–127.CrossRefGoogle Scholar
  14. Khalid, M., Haresign, W. and Luck, M.R. 2000. Secretion of IGF-1 by ovine granulosa cells: effects of growth hormone and follicle stimulating hormone. Animal Reproduction Science 58, 261–272.CrossRefGoogle Scholar
  15. Ledda, S. and Gonzalez-Bulnes, A. 2018. ET-Technologies in Small Ruminants. In: Niemann H., Wrenzycki C. (eds) Animal Biotechnology 1. Springer, ChamGoogle Scholar
  16. Luna-Palomera C, Berumen-Alatorre AC, Aguilar-Cabrales JA, Cansino GR. 2010. Fertilidad en ovejas de pelo complementadas con harina de almendra de palma africana. Livetock Research for Rural Development. 22, 1–7.Google Scholar
  17. Martinuk, S.D., Manning, A.W., Black, W.D. and Murphy, B.D. 1991. Effects of carbohydrates on the pharmacokinetics and biological activity of equine chorionic gonadotrophin in vivo. Biology of Reproduction, 45, 598–604.CrossRefGoogle Scholar
  18. Mattos, M.C.C., Bastos, M.R., Guardieiro, M.M., Carvalho, J.O., Franco, M.M., Mourão, G.B., Barros, C.M. and Sartori, R. 2011. Improvement of embryo production by the replacement of the last two doses of porcine follicle-stimulating hormone with equine chorionic gonadotropin in Sindhi donors. Animal Reproduction Science, 125, 119–123.CrossRefGoogle Scholar
  19. Mayorga, I., Mara, L., Sanna, D., Stelletta, C., Morgante, M., Casu, S. and Dattena, M. 2011. Good quality sheep embryos produced by superovulation treatment without the use of progesterone devices. Theriogenology, 75, 1661–1668.CrossRefGoogle Scholar
  20. Menchaca, A., Miller, V., Salveraglio, V. and Rubianes, E. 2007. Endocrine, luteal and follicular responses after the use of the Short-Term Protocol to synchronize ovulation in goats. Animal Reproduction Science, 102, 76–87.CrossRefGoogle Scholar
  21. Menchaca, A., Vilariño, M., Pinczak, A., Kmaid, S. and Saldaña, J.M. 2009. Progesterone treatment, FSH plus eCG, GnRH administration, and Day 0 Protocol for MOET programs in sheep. Theriogenology, 72, 477–83.CrossRefGoogle Scholar
  22. Menchaca, A., Vilariño, M., Crispo, M., de Castro, T. and Rubianes, E. 2010. New approaches to superovulation and embryo transfer in small ruminants. Reproduction Fertility Development, 22, 113–118.CrossRefGoogle Scholar
  23. Monniaux, D. and Pisselet, C. 1992. Control of proliferation and differentiation of ovine granulosa cells by insulin-like growth factor-1 and follicle-stimulating hormone in vitro. Biology of Reproduction, 46, 109–119.CrossRefGoogle Scholar
  24. Monniaux, D., Mariana, J.C. and Gibson, W.R. 1984. Action of PMSG on follicular populations in the heifer. Journal of Reproduction Fertility, 70:243–253.CrossRefGoogle Scholar
  25. Murphy, B.D. 2012. Equine chorionic gonadotropin: an enigmatic but essential tool. Animal Reproduction, 9, 223–230.Google Scholar
  26. Okada, M., Ishida, N., Ogiao, T., Itagaki, R., Ishikawa, D. and Fuki, Y. 1999. Effect of dosage of equine chorionic gonadotropin combined with a single injection of porcine follicle-Stimulating hormone for superovulation treatment in ewes. Journal Reproduction Development, 45, 307–313CrossRefGoogle Scholar
  27. Rahman, M.R., Rahman, M.M., Wan Khadijah, W.E. and Abdullah R.B. 2014. Follicle Stimulating Hormone (FSH) Dosage Based on Body Weight Enhances Ovulatory Responses and Subsequent Embryo Production in Goats. Asian-Australasian Journal Animal Science, 27, 1270–1274.CrossRefGoogle Scholar
  28. Russel, A.J.F., Doney, J.M. and Gunn, R.G. 1969. Subjective assessment of body fat in live sheep. Journal Agricultural Science, 72, 451–454.CrossRefGoogle Scholar
  29. Sanchez-Davila, F., Bernal, H., del Bosque, A., González, A., Olivares, E., Padilla, G. and Ledezma R. 2013. Superovulation and embryo quality with porcine follicle stimulation hormone ( pFSH ) in Katahdin hair sheep during breeding season Superovulation and embryo quality with porcine follicle stimulation hormone ( pFSH ) in Katahdin hair sheep during breeding. African Journal Agricultural Research, 8, 2977–2982.Google Scholar
  30. SAS. 2009. Statistical Analysis Systems Institute (SAS) statistics, version 9.2, SAS Institute, Cary, NC, USA. Versión 9.2.Google Scholar
  31. Shuib, M., Wahid, A., Yusoff, R., Zuki, M. and Malik, A. 2014. Effect of high doses of equine chorionic gonadotrophin ( eCG ) treatments on follicular developments, ovulation and pregnancy rate in boer goats. African Journal of Biotechnology, 13, 1374–1378.CrossRefGoogle Scholar
  32. Silva, J.R.V., Figueiredo, R.J. and va den Hurk, R. 2009. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology, 71, 1193–1208.CrossRefGoogle Scholar
  33. Simonetti, L., Forcada, F., Rivera, O., Carou, N., Albeiro, R., Abecia, J. and Palacin, I. 2008. Simplified superovulatory treatments in Corriedale ewes. Animal Reproduction Science, 104, 227–237.CrossRefGoogle Scholar
  34. Spicer, L.J. and Echternkamp S.E. 1995. The ovarian insulin and insulin-like growth factor system with an emphasis on domestic animals. Domestic Animal Endocrinology, 12, 223–245.CrossRefGoogle Scholar
  35. Torres-Zapata, S., Luna-Palomera, C., Aguilar-Cabrales, J.A., Peralta-Torres, J.A., Aké-López, J.R., Sánchez-Dávila, F. and Abad-Zavaleta, J. 2016. Ovulatory response and embryo quality in Katahdin ewes supplemented with palm oil. South African Journal of Animal Science, 46, 261–268.Google Scholar
  36. Üstüner, B., Alcay, S., Nak, Y., Nur, Z., Nak, D., Tuna, B., Sinsek, G. and Sagirkaya H. 2014. Repeated superovulation treatments in Kivircik ewes during breeding and nonbreeding seasons. Turkish Journal of Veterinary Animal Science, 38, 480–484.CrossRefGoogle Scholar
  37. Veiga-López, A., Gonzalez-Bulnes, A., Tresguerres, J.A., Dominguez, V., Ariznavarreta, C. and Cocero, M.J. 2006. Causes, characteristics and consequences of anovulatory follicles in superovulated sheep. Domestic Animal Endocrinology, 30, 76–87.CrossRefGoogle Scholar
  38. Vivanco-Mackie, H. 2013. Strategies for Superovulation, Embryo production and Transfer in Sheep and Alpacas. Proc. 29th Annual Meeting A.E.T.E. Istanbul, 43–74.Google Scholar
  39. Wright, J., Andrzej, B., Brock, K., Evans, B., Hare, W., Humbolt, P., Mapletoft, R., Le Guienne, B. and Nelson, R. 2000. Manual de la Sociedad Internacional de Transferencia de Embriones. IETS. Org. Pubs. p. 345. Available at: [Accessed December 14, 2015].
  40. Yu, Y., Li, W., Han, Z., Luo, M., Chang, Z. and Tan, J. 2003. The effect of follicle-stimulating hormone on follicular development, granulosa cell apoptosis and steroidogenesis and its mediation by insulin-like growth factor-I in the goat ovary. Theriogenology, 60, 1691–1704. Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Animal Reproduction and Genetic, Academic Division of Animal SciencesUniversidad Juárez Autónoma de TabascoVillahermosaMéxico
  2. 2.Instituto de Ciencias AgrícolasUniversidad Autónoma de Baja CaliforniaMexicaliMéxico
  3. 3.Laboratory of Animal Reproduction, Faculty of Agricultural ScienceUniversidad Autónoma de Nuevo LeónMarínMéxico

Personalised recommendations