Advertisement

Tropical Animal Health and Production

, Volume 51, Issue 4, pp 929–937 | Cite as

Spatiotemporal dynamics and risk factors of rotavirus A circulation in backyard pig farms in a Philippine setting

  • Lyre Anni E. Murao
  • Michael G. Bacus
  • Nicole Xyza T. Junsay
  • Denia Lou D. Albarillo
  • Ma. Catherine B. Otero
  • Sheryl Grace C. Buenaventura
  • Kim Dianne B. Ligue
  • Pedro A. AlviolaIVEmail author
Regular Articles
  • 44 Downloads

Abstract

Rotavirus A is one of the leading etiological agents of porcine gastroenteritis, a condition which results to stunted growth among piglets. Moreover, there is increasing evidence for zoonosis of rotavirus A (RVA), which is also the principal cause of diarrhea in children. In the absence of rigorous animal health monitoring in Philippine backyard farms, there is therefore a strong need for RVA surveillance. In this study, 30 randomly selected backyard farms were subjected to surveillance for RVA for 12 months. Results show that RVA detection at a monthly farm-level rate ranged from 0 to 52%, with an overall average of 23%. RVA had higher detection rates in adult pigs compared to young piglets and was most prevalent in non-diarrheic stools, indicating asymptomatic circulation of the virus. Spatiotemporal analysis demonstrated that the viral circulation exhibits a seasonal pattern that peaks and forms geographical clusters during the cooler months of the year, suggesting farm-to-farm transmission. Risk factor analysis identified specific farm conditions that increase the likelihood of RVA circulation: presence of gilts, larger herd size, presence of other animals, and abiotic factors such as low relative humidity and low altitude. The same analysis also revealed three major management practices that can help reduce the pressure of infection in these farms: sanitation and waste disposal, animal grouping, and diet. This new perspective on porcine RVA circulation will benefit the underprivileged backyard farmers and help empower them to protect both animal and public health.

Keywords

Porcine rotavirus Surveillance Spatial autocorrelation Risk factors Backyard farms 

Notes

Acknowledgements

The authors would like to thank the local government officials and farmers who granted permission to conduct the study in the area.

Funding information

This project was funded by the University of the Philippines Balik-PhD Program OVPAA-BPhD-2016-04.

Compliance with ethical standards

Informed consent

Informed consent was obtained from all individual backyard farmers who participated in the study.

Statement of animal rights

This article does not contain any clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11250_2018_1776_MOESM1_ESM.docx (48 kb)
ESM 1 (DOCX 48 kb)

References

  1. Amimo, J.O., Otieno, T.F., Okoth, E., Onono, J.O. and Bett, B., 2017. Risk factors for rotavirus infection in pigs in Busia and Teso subcounties, Western Kenya. Tropical Animal Health and Production, 49(1), 105–112CrossRefGoogle Scholar
  2. Brewer, L., Andrews, N., Sullivan, D. and Gehr, W., 2013. Agricultural composting and water quality.Google Scholar
  3. Chang, H.C., 2007. Analysis of the Philippine chicken industry: commercial versus backyard sectors. Asian Journal of Agriculture and Development, 4(1), 41–56Google Scholar
  4. Davidson, P., Bhattarai, R. and Kuhlenschmidt, M.S., 2016. Overland transport of rotavirus and the effect of soil. Water, 8(3), 78CrossRefGoogle Scholar
  5. Dewey, C.E., Carman, S., Pasma, T., Josephson, G. and McEwen, B., 2003. Relationship between group A porcine rotavirus and management practices in swine herds in Ontario. The Canadian Veterinary Journal, 44(8), 649–653Google Scholar
  6. Elschner, M., Prudlo, J., Hotzel, H., Otto, P. and Sachse, K., 2002. Nested reverse transcriptase-polymerase chain reaction for the detection of group A rotaviruses. Journal of Veterinary Medicine Series B, 49(2), 77–81CrossRefGoogle Scholar
  7. Er, A., Rosli, M., Asmahani, A., Harsuzilawati, M. and Mohamad, N.M., 2010. Spatial mapping of dengue incidence: a case study in Hulu Langat district, Selangor Malaysia. International Journal of Human and Social Sciences, 5(6), 410–414Google Scholar
  8. Estes, M.K. and Cohen, J., 1989. Rotavirus gene structure and function. Microbiological Reviews, 53(4), 410–449Google Scholar
  9. Hong Anh, P., Carrique-Mas, J.J., Van Cuong, N., Hoa, N.T., Lam Anh, N., Duy, D.T., Hien, V.B., Vu Tra My, P., Rabaa, M.A., Farrar, J., Baker, S. and Bryant, J.E., 2014. The prevalence and genetic diversity of group A rotaviruses on pig farms in the Mekong Delta region of Vietnam. Veterinary Microbiology, 170(3–4), 258–265CrossRefGoogle Scholar
  10. Janke, B.H., Morehouse, L.G. and Solorzano, R.F., 1988. Single and mixed infections of neonatal pigs with rotaviruses and enteroviruses: clinical signs and microscopic lesions. Canadian Journal of Veterinary Research, 52(3), 364–369Google Scholar
  11. Kucharski, A.J. and Gog, J.R., 2012. The role of social contacts and original antigenic sin in shaping the age pattern of immunity to seasonal influenza. PLoS Computational Biology, 8(10), e1002741CrossRefGoogle Scholar
  12. Levy, K., Hubbard, A.E. and Eisenberg, J.N.S., 2008. Seasonality of rotavirus disease in the tropics: a systematic review and meta-analysis. International Journal of Epidemiology, 38(6), 1487–1496CrossRefGoogle Scholar
  13. Lindberg, J.E., 2014. Fiber effects in nutrition and gut health in pigs. Journal of Animal Science and Biotechnology, 5(1), 15CrossRefGoogle Scholar
  14. Matabane, M.B., Nethenzheni, P., Thomas, R., Netshirovha, T.R., Norris, D., Nephawe, K.A. and Nedambale, T.L., 2015. Status of the smallholder pig farming sector in Gauteng province of South Africa. Applied Animal Husbandry & Rural Development, 8(1), 19–25Google Scholar
  15. Midgley, S.E., Bányai, K., Buesa, J., Halaihel, N., Hjulsager, C.K., Jakab, F., Kaplon, J., Larsen, L.E., Monini, M., Poljšak-Prijatelj, M., Pothier, P., Ruggeri, F.M., Steyer, A., Koopmans, M. and Böttiger, B., 2012. Diversity and zoonotic potential of rotaviruses in swine and cattle across Europe. Veterinary Microbiology, 156(3–4), 238–245CrossRefGoogle Scholar
  16. Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J., Heijne, J., Sadkowska-Todys, M., Rosinska, M. and Edmunds, W.J., 2008. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Medicine, 5(3), e74CrossRefGoogle Scholar
  17. Murni, D., Trisunuwati, P. and Liao, M.H., 2016. Zoonotic potential of rotavirus from swine and bovine in south of Taiwan. The Journal of Experimental Life Science, 6(1), 29–33CrossRefGoogle Scholar
  18. Murphy, A.M., Grohmann, G.S. and Sexton, M.F.H., 1983. Infectious gastroenteritis in Norfolk island and recovery of viruses from drinking water. Epidemiology and Infection, 91(1), 139–146Google Scholar
  19. Nguyen, T.V., Van, P. Le, Huy, C.H., Gia, K.N. and Weintraub, A., 2006. Etiology and epidemiology of diarrhea in children in Hanoi, Vietnam. International Journal of Infectious Diseases, 10(4), 298–308Google Scholar
  20. Parashar, U.D., Burton, A., Lanata, C., Boschi-Pinto, C., Shibuya, K., Steele, D., Birmingham, M. and Glass, R.I., 2009. Global mortality associated with rotavirus disease among children in 2004. The Journal of Infectious Diseases, 200(Supplement_1), S9–S15CrossRefGoogle Scholar
  21. Patel, M.M., Pitzer, V.E., Alonso, W.J., Vera, D., Lopman, B., Tate, J., Viboud, C. and Parashar, U.D., 2013. Global seasonality of rotavirus disease. The Pediatric Infectious Disease Journal, 32(4), e134CrossRefGoogle Scholar
  22. Ramos, A.P.D., Stefanelli, C.C., Linhares, R.E.C., de Brito, B.G. and Nozawa, C.M., 1998. The infectivity of pig rotavirus in stools. Brazilian Journal of Vetrinary Research and Animal Science, 35(2), 00–00CrossRefGoogle Scholar
  23. Riedel, S., Schiborra, A., Huelsebusch, C., Huanming, M. and Schlecht, E., 2012. Opportunities and challenges for smallholder pig production systems in a mountainous region of Xishuangbanna, Yunnan province, China. Tropical Animal Health and Production, 44(8), 1971–1980CrossRefGoogle Scholar
  24. Salces, A., Quirog, L. and Chatto, E., 2013. Participatory approach in definition of breeding objective. Philippine Journal of Veterinary and Animal Sciences, 39(2), 165–172Google Scholar
  25. Sattar, S.A., Ijaz, M.K., Johnson-Lussenburg, C.M. and Springthorpe, V.S., 1984. Effect of relative humidity on the airborne survival of rotavirus SA11. Applied and Environmental Microbiology, 47(4), 879–881Google Scholar
  26. Stanton Emms & Sia, 2010. The Philippines pig farming sector: a briefing for Canadian livestock genetics suppliers. Singapore, 1–22Google Scholar
  27. Svensmark B, Nielsen K, Dalsgaard K, W.P., 1989. Epidemiological studies of piglet diarrhoea in intensively managed Danish sow herds. III. Rotavirus Infection. Acta Veterinaria Scandinavica, 30(1), 63–70Google Scholar
  28. Takemae, N., Shobugawa, Y., Nguyen, P.T., Nguyen, T., Nguyen, T.N., To, T.L., Thai, P.D., Nguyen, T.D., Nguyen, D.T., Nguyen, D.K., Do, H.T., Le, T.Q.A., Hua, P.T., Van Vo, H., Nguyen, D.T., Nguyen, D.H., Uchida, Y., Saito, R. and Saito, T., 2016. Effect of herd size on subclinical infection of swine in Vietnam with influenza A viruses. BMC Veterinary Research, 12(1), 227Google Scholar
  29. Theuns, S., Vyt, P., Desmarets, L.M.B., Roukaerts, I.D.M., Heylen, E., Zeller, M., Matthijnssens, J. and Nauwynck, H.J., 2016. Presence and characterization of pig group A and C rotaviruses in feces of Belgian diarrheic suckling piglets. Virus Research, 213, 172–183CrossRefGoogle Scholar
  30. Vlasova, A.N., Amimo, J.O. and Saif, L.J., 2017. Porcine rotaviruses: epidemiology, immune responses and control strategies. Viruses, 9(3), 48Google Scholar
  31. Wilhelm, B., Leblanc, D., Leger, D., Gow, S., Deckert, A., Pearl, D.L., Friendship, R., Raji, A., Houde, A. and McEwen, S., 2016. Farm-level prevalence and risk factors for detection of hepatitis E virus, porcine enteric calicivirus, and rotavirus in Canadian finisher pigs. Canadian Journal of Veterinary Research, 80(2), 95–105Google Scholar
  32. Wu, F., Bányai, K., Jiang, B., Liu, L.T. and Marton, S., 2017. Novel G9 rotavirus strains co-circulate in children and pigs. Scientific Reports, 7, 40731CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Lyre Anni E. Murao
    • 1
  • Michael G. Bacus
    • 1
  • Nicole Xyza T. Junsay
    • 1
  • Denia Lou D. Albarillo
    • 2
  • Ma. Catherine B. Otero
    • 1
  • Sheryl Grace C. Buenaventura
    • 1
  • Kim Dianne B. Ligue
    • 2
  • Pedro A. AlviolaIV
    • 3
    Email author
  1. 1.Department of Biological Science and Environmental StudiesUniversity of the Philippines MindanaoDavao CityPhilippines
  2. 2.Department of Mathematics, Physics and Computer ScienceUniversity of the Philippines MindanaoDavao CityPhilippines
  3. 3.School of ManagementUniversity of the Philippines MindanaoDavao CityPhilippines

Personalised recommendations