Advertisement

Tropical Animal Health and Production

, Volume 51, Issue 2, pp 449–456 | Cite as

The phenotypic relationship between residual intake and gain and other feed efficiency traits in Nellore cattle

  • Darcilene Maria de FigueiredoEmail author
  • Maria Eugênia Zerlotti Mercadante
  • Aldrin Vieira Pires
  • Renata Helena Branco
  • Enilson Geraldo Ribeiro
  • Gabriel Machado Dallago
  • Marianne Schorer
  • Pedro Ribeiro Rocha
Regular Articles
  • 74 Downloads

Abstract

This study aimed to compare feed efficiency measures of Nellore beef cattle on different residual intake and gain (RIG) classes. We used data from 610 animals weighing on average 236.33 kg and average of 283 days of age from feedlot performance tests carried out between 2005 and 2012. Animals were grouped based on RIG into three different classes: high RIG (> mean + 0.5 standard deviation (SD), most efficient; n = 193), medium RIG (mean ± 0.5 SD; n = 235), and low RIG (< mean – 0.5 SD, least efficient; n = 182). Residual feed intake (RFI), residual gain (RG), feed conversion ratio (FCR), feed efficiency (FE), relative growth rate (RGR), and Kleiber ratio (KR) of animals in each RIG class were compared by Tukey test at 1% of probability. Phenotypic correlations between variables were evaluated as well. Animals on high RIG class showed lower dry matter intake (P < 0.01) and higher average daily gain (P < 0.01) than low RIG animals. Consequently, high RIG animals had lower FCR (P < 0.01) and higher FE (P < 0.01) than those animals in low RIG class. The most efficient animals based on RIG were also the most efficient animals based on RG and RFI. RIG was negatively correlated to dry matter intake (P < 0.01) and FCR (P < 0.01), and a positive correlation was found between RIG and FE (P < 0.01). Therefore, RIG appears to be a good parameter to select animals with reduced dry matter intake and high productive performance.

Keywords

Animal performance Beef production Feed efficiency Genetic improvement 

Notes

Funding information

This work was financially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and a scholarship was granted to Pedro R. Rocha and Gabriel M. Dallago by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with ethical standards

Conflict of interest statement

The authors have no conflict of interest to declare.

Statement of animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Almeida, R., 2005. Consumo e eficiência alimentar de bovinos em crescimento (Thesis, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo).CrossRefGoogle Scholar
  2. Arthur, J. P. F. and Herd, R. M. 2008. Residual feed intake in beef cattle. Revista Brasileira de Zootecnia, 37(suplemento especial), 269–279.  https://doi.org/10.1590/S1516-35982008001300031 CrossRefGoogle Scholar
  3. Arthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C. and Parnell, P. F. 2001a. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. Journal of Animal Science, 79(11), 2805–2811.  https://doi.org/10.2527/2001.79112805x CrossRefGoogle Scholar
  4. Arthur, P. F., Renand, G. and Krauss, D. 2001b. Genetic and phenotypic relationships among different measures of growth and feed efficiency in young Charolais bulls. Livestock Production Science, 68(2), 131–139.  https://doi.org/10.1016/S0301-6226(00)00243-8 CrossRefGoogle Scholar
  5. Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M. and Lyle, K. L. 2003. Residual feed intake and body composition in young growing cattle. Canadian Journal of Animal Science, 83(2), 189–204.  https://doi.org/10.4141/A02-065 CrossRefGoogle Scholar
  6. Bergh, L., Scholtz, M. M. and Erasmus, G. J., 1992. Identification and assessment of the best animal: the Kleiber ratio (growth / metabolic mass) as a selection criterion for beef cattle. Proceedings of the Australian Association of Animal Breeding Genetic, 1992, 338–340.Google Scholar
  7. Berry, D. P. and Crowley, J. J. 2012. Residual intake and body weight gain: a new measure of efficiency in growing cattle. Journal of Animal Science, 90(1), 109–115.  https://doi.org/10.2527/jas.2011-4245 CrossRefGoogle Scholar
  8. Branco, R. H., Magnani, E., Grion, A. L., Mercadante, M. E. Z., Bonilha, S. F. M. and Ribeiro, E., 2011. Consumo e ganho residual em bovinos Nelore classificados quanto ao consumo alimentar residual. Proceedings of the Reunião Anual da Sociedade Brasileira de Zootecnia, Brasília, Brazil, 2011, (Sociedade Brasileira de Zootecnia).Google Scholar
  9. Coutinho, C. C., Mercadante, M. E. Z., Jorge, A. M., Paz, C. C. P., Faro, L. E. and Monteiro, F. M. 2015. Growth curves of carcass traits obtained by ultrasonography in three lines of Nellore cattle selected for body weight. Genetics and Molecular Research, 14(4), 14076–14087.  https://doi.org/10.4238/2015.October.29.27 CrossRefGoogle Scholar
  10. Crowley, J. J., Evans, R. D., Mc Hugh, N., Kenny, D. A., McGee, M., Crews, D. H. and Berry, D. P. 2011. Genetic relationships between feed efficiency in growing males and beef cow performance. Journal of Animal Science, 89(11), 3372–3381.  https://doi.org/10.2527/jas.2011-3835 CrossRefGoogle Scholar
  11. Crowley, J. J., McGee, M., Kenny, D. A., Crews, D. H., Evans, R. D. and Berry, D. P. 2010. Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. Journal of Animal Science, 88(3), 885–894.  https://doi.org/10.2527/jas.2009-1852 CrossRefGoogle Scholar
  12. Fitzhugh Jr, H. A. and Taylor, C. S. 1971. Genetic analysis of degree of maturity. Journal of Animal Science, 33(4), 717–725.  https://doi.org/10.2527/jas1971.334717x CrossRefGoogle Scholar
  13. Grion, A. L., 2012. Parâmetros genéticos de medidas indicadoras de eficiência alimentar de bovinos de corte (Dissertation, Instituto de Zootecnia - IZ).Google Scholar
  14. Grion, A. L., Mercadante, M. E. Z., Cyrillo, J. N. S. G., Bonilha, S. F. M., Magnani, E. and Branco, R. H. 2014. Selection for feed efficiency traits and correlated genetic responses in feed intake and weight gain of Nellore cattle1. Journal of Animal Science, 92(3), 955–965.  https://doi.org/10.2527/jas.2013-6682 CrossRefGoogle Scholar
  15. Hegarty, R. S., Goopy, J. P., Herd, R. M. and McCorkell, B. 2007. Cattle selected for lower residual feed intake have reduced daily methane production. Journal of Animal Science, 85(6), 1479–1486.  https://doi.org/10.2527/jas.2006-236 CrossRefGoogle Scholar
  16. Kleiber, M. 1936. Problems involved in breeding for efficiency of food utilization. Proceedings of the American Society of Animal Nutrition, 1936b(1), 247–258.  https://doi.org/10.2527/jas1936.1936b1247x Google Scholar
  17. Koch, R. M., Swiger, L. A., Chambers, D. and Gregory, K. E. 1963. Efficiency of feed use in beef cattle. Journal of Animal Science, 22(2), 486–494.  https://doi.org/10.2527/jas1963.222486x CrossRefGoogle Scholar
  18. Lancaster, P. A., Carstens, G. E., Crews, D. H., Welsh, T. H., Forbes, T. D. A., Forrest, D. W., Tedeschi, L. O., Randel, R. D. and Rouquette, F. M. 2009. Phenotypic and genetic relationships of residual feed intake with performance and ultrasound carcass traits in Brangus heifers1. Journal of Animal Science, 87(12), 3887–3896.  https://doi.org/10.2527/jas.2009-2041
  19. Lassey, K. R., Pinares-Patiño, C. S. and Ulyatt, M. J., 2002. Methane emission by grazing livestock: some findings on emission determinants. In: J.v. Ham et al. (eds), Proceedings of the Non-CO2 greenhouse gases: scientific understanding, control options and policy aspects, Rotterdam Netherlands, 2002, (Millpress), 95–100.Google Scholar
  20. Magnani, E., 2011. Caracterização do consumo alimentar residual e relações com desempenho e metabolismo de fêmeas nelore (Dissertation, Instituto de Zootecnia – IZ).Google Scholar
  21. Mercadante, M. E. Z., Packer, I. U., Razook, A. G., Cyrillo, J. N. S. G. and Figueiredo, L. A. 2003. Direct and correlated responses to selection for yearling weight onreproductive performance of Nelore cows1. Journal of Animal Science, 81(2), 376–384.  https://doi.org/10.2527/2003.812376x CrossRefGoogle Scholar
  22. Nkrumah, J. D., Basarab, J. A., Price, M. A., Okine, E. K., Ammoura, A., Guercio, S., Hansen, C., Li, C., Benkel, B., Murdoch, B. and Moore, S. S. 2004. Different measures of energetic efficiency and their phenotypic relationships with growth, feed intake, and ultrasound and carcass merit in hybrid cattle1. Journal of Animal Science, 82(8), 2451–2459.  https://doi.org/10.2527/2004.8282451x CrossRefGoogle Scholar
  23. Nkrumah, J. D., Okine, E. K., Mathison, G. W., Schmid, K., Li, C., Basarab, J. A., Price, M. A., Wang, Z. and Moore, S. S. 2006. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle1. Journal of Animal Science, 84(1), 145–153.  https://doi.org/10.2527/2006.841145x CrossRefGoogle Scholar
  24. Robinson, D. L. and Oddy, V. H. 2004. Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livestock Production Science, 90(2), 255–270.  https://doi.org/10.1016/j.livprodsci.2004.06.011 CrossRefGoogle Scholar
  25. Rolim, G. D. S., Camargo, M. B. P. D., Lania, D. G. and Moraes, J. F. L. D. 2007. Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de são Paulo. Bragantia, 66(4), 711–720.  https://doi.org/10.1590/S0006-87052007000400022 CrossRefGoogle Scholar
  26. Sainz, R. D., Cruz, G. D., Monteiro, R. B., Rodriguez, J. A., Monteiro, D. B., Guidi, V. and Anaruma, R. J., 2006. Carcass composition and visceral organs are similar at harvest in low- and high-residual feed intake groups of Angus-Hereford steers. Proceedings of the Proceedings, Western Section, of the American Society of Animal Science, 2006, 401–403.Google Scholar
  27. SAS 1999. Statistical Analysis System version 8.0. SAS Inst, Cary, NC.Google Scholar
  28. Silva, S. C., Nascimento Júnior, D. and Euclides, V. B. P., 2008. Pastagens: conceitos básicos, produção e manejo. Suprema, Viçosa, MG.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Darcilene Maria de Figueiredo
    • 1
    Email author
  • Maria Eugênia Zerlotti Mercadante
    • 2
  • Aldrin Vieira Pires
    • 1
  • Renata Helena Branco
    • 2
  • Enilson Geraldo Ribeiro
    • 3
  • Gabriel Machado Dallago
    • 1
  • Marianne Schorer
    • 1
  • Pedro Ribeiro Rocha
    • 4
  1. 1.Departamento de ZootecniaUniversidade Federal dos Vales do Jequitinhonha e Mucuri–JK CampusDiamantinaBrazil
  2. 2.Instituto de Zootecnia, Centro APTA Bovinos de CorteSertãozinhoBrazil
  3. 3.Instituto de Zootecnia, Centro APTA Bovinos de LeiteNova OdessaBrazil
  4. 4.Instituto Federal de Ciência e Tecnologia de Mato Grosso–Juína CampusJuínaBrazil

Personalised recommendations