Advertisement

The distribution of important sero-complexes of flaviviruses in Malaysia

  • Kiven KumarEmail author
  • Siti Suri ArshadEmail author
  • Ooi Peck Toung
  • Yusuf Abba
  • Gayathri Thevi Selvarajah
  • Jalila Abu
  • Yasmin A.R
  • Bee Lee Ong
  • Faruku Bande
Reviews

Abstract

Flaviviruses (FVs) are arthropod-borne viruses of medical and veterinary importance. Numerous species of FVs have been isolated from various host; mainly humans, animals, ticks, and mosquitoes. Certain FVs are extremely host-specific; at the same time, some FVs can infect an extensive range of species. Based on published literatures, 11 species of FVs have been detected from diverse host species in Malaysia. In humans, dengue virus and Japanese encephalitis virus have been reported since 1901 and 1942. In animals, the Batu Cave virus, Sitiawan virus, Carey Island, Tembusu virus, Duck Tembusu virus, and Japanese encephalitis viruses were isolated from various species. In mosquitoes, Japanese encephalitis virus and Kunjin virus were isolated from Culex spp., while Zika virus and Jugra virus were isolated from Aedes spp. In ticks, the Langat virus was isolated from Ixodes spp. One of the major challenges in the diagnosis of FVs is the presence of sero-complexes as a result of cross-reactivity with one or more FV species. Subsequently, the distribution of specific FVs among humans and animals in a specific population is problematic to assess and often require comprehensive and thorough analyses. Molecular assays such as quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and digital droplet RT-PCR (ddRT-PCR) have been used for the differentiation of flavivirus infections to increase the accuracy of epidemiological data for disease surveillance, monitoring, and control. In situations where sero-complexes are common in FVs, even sensitive assays such as qRT-pCR can produce false positive results. In this write up, an overview of the various FV sero-complexes reported in Malaysia to date and the challenges faced in diagnosis of FV infections are presented.

Keywords

Arthropod Flavivirus Human Animal Sero-complex 

Notes

Funding

The authors would like to acknowledge financial assistance from Graduate Putra Initiative, Putra Grant (9492700) and Fundamental Research Grant Scheme (FRGS-5535001) from Universiti Putra Malaysia and Ministry of Higher Education Malaysia, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aldred, J. 1990. Flavivirus surveillance in Victoria (Sentinel chicken program). Communicable Diseases Intelligence 22, 9Google Scholar
  2. Ashraf, U., Ye, J., Ruan, X., Wan, S., Zhu, B. and Cao, S., 2015. Usutu virus: an emerging Flavivirus in Europe. Viruses, 7, 219–238CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bancroft, W.H., Scott, R., Snitbhan, R., Weaver, Jr.R. and Gould, D.J., 1976. Isolation of Langat virus from Haemaphysalis papuana Thorell in Thailand. The American Journal of Tropical Medicine and Hygiene, 25, 500–504CrossRefPubMedGoogle Scholar
  4. Banet-Noach, C., Simanov, L. and Malkinson, M., 2003. Direct (nonvector) transmission of West Nile virus in geese. Avian Pathology, 32, 489–494CrossRefPubMedGoogle Scholar
  5. Beasley, D.W.C. and Barrett, A.D.T., 2002. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. Journal of Virology, 76, 13097–13100CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beltramello, M., Williams, K.L., Simmons, C.P., Macagno, A., Simonelli, L., Quyen, N.T., Sukupolvi-Petty, S., Navarro-Sanchez, E., Young, P.R., de Silva, A.M., Rey, F.A., Varani, L., Whitehead, S.S., Diamond, M.S., Harris, E., Lanzavecchia, A. and Sallusto F., 2010. The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe, 8, 271–283CrossRefPubMedGoogle Scholar
  7. Bharucha, T., Sengvilaipaseuth, O., Seephonelee, M., Vongsouvath, M., Vongsouvath, M., Rattanavong, S., Piorkowski, G., Lecuit, M., Gorman, C., Pommier, J.D., Newton, P.N., de Lamballerie, X. and Dubot-Pérès, A., 2018. Detection of Japanese encephalitis virus RNA in human throat samples in Laos a pilot study. Scientific Reports, 8, 8018CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blitvich, B.J., 2008. Transmission dynamics and changing epidemiology of West Nile virus. Animal Health Research Reviews, Mar 19, 1–16Google Scholar
  9. Bowen, E.T., Simpson, D.I.H., Platt, G.S., Way, H.J. and Smith, C.E.G., 1970. Arbovirus infections in Sarawak: the isolation of Kunjin virus from mosquitoes of the Culex pseudovishnui group. Annals of Tropical Medicine & Parasitology, 64, 263–268CrossRefGoogle Scholar
  10. Calisher, C.H., Karabatsos, N., Dalrymple, J.M., Shope, R.E., Porterfield, J.S., Westaway, E.G. and Brandt, W.E., 1989. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. Journal General Virology, 70, 37–43CrossRefGoogle Scholar
  11. Chancey, C., Grinev, A., Volkova, E. and Rios, M., 2015. The global ecology and epidemiology of West Nile virus. BioMed Research International, 2015, 1–20CrossRefGoogle Scholar
  12. Chen, Z., Liu, L., Lv, Y., Zhang, W., Li, J., Zhang, Y., Di, T., Zhang, S., Liu, J., Li, J., Qu, J., Hua, W., Li, C., Wang, P., Zhang, Q., Xu, Y., Jiang, R., Wang, Q., Chen, L., Wang, S., Pang, X., Liang, M., Ma, X., Li, X., Wang, Q., Zhang, F. and Li, D., 2016. A fatal yellow fever virus infection in China: description and lessons. Emerging Microbes & Infections, 5, e69CrossRefGoogle Scholar
  13. Cruickshank, E.K., 1951. Acute encephalitis in Malaya. Transactions of the Royal Society of Tropical Medicine & Hygiene, 45, 113CrossRefGoogle Scholar
  14. Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth, G., Duangchinda, T., Sakuntabhai, A., Cao-Lormeau, V.M., Malasit, P., Rey, F.A., Mongkolsapaya, J. and Screaton, G.R., 2016. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nature Immunology, 17, 1–8CrossRefGoogle Scholar
  15. Dhimal, M., Ahrens, B. and Kuch, U., 2015. Climate change and spatiotemporal distributions of vector-borne diseases in Nepal: a systematic synthesis of literature. PloS One, 10, e0129869CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dick, G.W.A., Kitchen, S.F. and Haddow, A.J., 1952. Zika virus isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine & Hygiene, 46, 509–520CrossRefGoogle Scholar
  17. Duffy, M.R., Chen, T.H., Hancock, W.T., Powers, A.M., Kool, J.L., Lanciotti, R.S., Pretrick, M., Marfel, M., Holzbauer, S., Dubray, C., Guillaumot, L., Griggs, A., Bel, M., Lambert, A.J., Laven, J., Kosoy, O., Panella, A., Biggerstaff, B.J., Fischer, M. and Hayes, E.B., 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. The New England Journal of Medicine, 360, 2536–2543CrossRefPubMedGoogle Scholar
  18. Ekins, S., Liebler, J., Neves, B. J., Lewis, W. G., Coffee, M., Bienstock, R., Southan, C. and Andrade, C.H., 2016. Illustrating and homology modeling the proteins of the Zika virus. F1000 Research, 5, 1–22Google Scholar
  19. Füzik, T., Formanová, P., Růžek, D., Yoshii, K., Niedrig, M. and Plevka, P., 2018. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nature Communications, 9, 436CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gamino, V. and Hofle, U., 2013. Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Veterinary Research, 44, 39CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gao, X., Liu, H., Li, M., Fu, S. and Liang, G., 2015. Insights into the evolutionary history of Japanese encephalitis virus (JEV) based on whole-genome sequences comprising the five genotypes. Virology Journal, 12, 43–50CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gritsun, T.S., Lashkevich, V.A. and Gould, E.A., 2003. Tick-borne encephalitis. Antiviral Research, 57, 129–146CrossRefPubMedGoogle Scholar
  23. Hall, R.A., Scherret, J.H. and Mackenzie, J.S., 2001. Kunjin virus: an Australian variant of West Nile?. Annals of the New York Academy of Sciences, 951, 153–160CrossRefPubMedGoogle Scholar
  24. Hammon, W.M. and Sather, G.E., 1956. Immunity of hamsters to West Nile and Murray Valley viruses following immunization with St. Louis and Japanese B. Proceedings of the Society for Experimental Biology and Medicine, 91, 521–524CrossRefPubMedGoogle Scholar
  25. Heinz, F.X. and Stiasny, K., 2017. The antigenic structure of Zika virus and its relation to other Flaviviruses: implication for infection and immunoprophylaxis. Microbiology and molecular Biology reviews. 81, E000055–16CrossRefGoogle Scholar
  26. Hirota, J., Nishi, H., Matsuda, H., Tsunemitsu, H. and Shimiz, S., 2010. Cross-reactivity of Japanese encephalitis virus-vaccinated horse sera in serodiagnosis of West Nile virus. The Journal of Veterinary Medical Science, 72, 369–372CrossRefPubMedGoogle Scholar
  27. Ho, Z.J.M., Hapuarachchl, H.C., Barkham, T., Chow, A., Ng, L.C., Vernon, J.M. and Singapore Zika Study Group., 2017. Outbreak of Zika virus infection in Singapore: an epidemiological, entomological, virological, and clinical analysis. The Lancet Infectious Diseases, 17, 813–821CrossRefGoogle Scholar
  28. Homonnay, Z.G., Kovács, E.W., Bányai, K., Albert, M., Fehér, E., Mató, T., Tatár-Kis, T. and Palya, V., 2014. Tembusu-like flavivirus (Perak virus) as the cause of neurological disease outbreaks in young Pekin ducks. Avian Pathology, 43, 552–560CrossRefPubMedGoogle Scholar
  29. Joubert, J. and Barnett, C. 2018. Neurologic diseases in tropical Oceania. In: P.M. Preu and M. Dumas (eds), Neuroepidemiology in tropical health, (Academic Press), 87-103Google Scholar
  30. Kanai, R., Kar, K., Anthony, K., Gould, L. H., Ledizet, M., Fikrig, E., Marasco, W.A., Koski, R.A. and Modis, Y., 2006. Crystal structure of West Nile virus envelope glycoprotein reveals. Journal of Virology, 80, 11000–11008CrossRefPubMedPubMedCentralGoogle Scholar
  31. King, A.M.Q., Adams, M.J., Carstens, E.B. and Lefkowitz, E.J., 2012. Virus taxonomy: classification and nomenclature of viruses: ninth report of viruses, (Elsevier Academic Press, United State of America)Google Scholar
  32. Kono, Y., Tsukamota, K., Mahani Abd Hamid, Azizah Darus, Lian, T.C., Sam, L.S., Yok, C.N., Di, K.B., Lim, K.T., Yamaguchi, S. and Narita, M., 2000. Encephalitis and retarded growth of chicks caused By Sitiawan virus, a new isolate belonging to the genus Flavivirus. The American Journal of Tropical Medicine and Hygiene, 63, 94–101CrossRefPubMedGoogle Scholar
  33. Kostyuchenko, V.A., Zhang, Q., Tan, J. L., Ng, T. and Lok, S., 2013. Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. Journal of Virology, 87, 7700–7707CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kostyuchenko, V.A., Chew, P.L., Ng, T. and Lok, S., 2014. Near-atomic resolution cryo-electron microscopic structure of dengue serotype 4 Virus. Journal of Virology, 88, 477–482CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., Strauss, E.G., Baker, T.S., Strauss, J.H., 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 108, 717–725CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kumar, K., Arshad, S.S., Selvarajah, G.T., Abu, J., Toung, O.P., Abba, Y., Bande, F., Yasmin, A.R., Sharma, R., Ong, B.L., Rasid, A.A., Hashim, N., Peli, A., Heshini, E.P. and Shah, A.K.M.K., 2018a. Prevalence and risk factors of Japanese encephalitis virus (JEV) in livestock and companion animal in high-risk areas in Malaysia. Tropical Animal Health and Production 50, 741–752CrossRefPubMedGoogle Scholar
  37. Kumar, K., Arshad, S.S., Thevi, G., Abu, J., Peck, O., Abba, Y., Yasmin, A.R., Bande, F., Sharma, R. and Ong, B.L., 2018b. Japanese encephalitis in Malaysia: an overview and timeline. Acta Tropica, 185, 219–229CrossRefPubMedGoogle Scholar
  38. Leake, C. J, Ussery, M. A, Nisalak, A., Hoke, C.H, Andre R. and Burke, D.S., 1986. Virus isolations from mosquitoes collected during the 1982 Japanese encephalitis epidemic in northern Thailand. Transactions of the Royal Society of Tropical Medicine & Hygiene, 80, 831–837CrossRefGoogle Scholar
  39. Lee, E., Hall, R.A. and Lobigs, M. 2004. Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. Journal of Virology, 78, 8271–8280CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lewis, L., Taylor, H.G., Sorem, M.B., Norcross, J.W. and Kindsvatter, V.H., 1947. Japanese B encephalitis. Archives of Neurology and Psychiatry, 57, 430–463CrossRefPubMedGoogle Scholar
  41. Li, L., Lok, S.M., Yu, I.M., Zhang, Y., Kuhn, R.J., Chen, J., and Rossmann, M.G., 2008. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Sciences, 319, 1830–1834CrossRefGoogle Scholar
  42. Li, X., Shi, Y., Liu, Q., Wang, Y., Li, G., Teng Q., Zhang, Y., Liu, S. and Li, Z., 2015. Airborne transmission of a novel Tembusu virus in ducks. Journal of Clinical Microbiology, 53, 2734–2736CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li, J., Gao, N., Fan, D., Chen, H., Sheng, Z. and Fu, S., 2016. Cross-protection induced by Japanese encephalitis vaccines against different genotypes of dengue viruses in mice. Nature Publishing Group, October 2015, 1–9Google Scholar
  44. Lim, S.K., Lim, J.K. and Yoon, I.K., 2017. An update on Zika virus in Asia. Infection & Chemotherapy, 49, 91–100CrossRefGoogle Scholar
  45. Lin, J., Liu, Y., Wang, X., Yang, B., He, P., Yang, Z., Duan, H., Xie, J., Zou, L., Zhao, J. and Pan, J., 2015. Efficacy evaluation of an inactivated duck Tembusu virus vaccine. Avian Diseases, 59, 244–248CrossRefPubMedGoogle Scholar
  46. Liu, P. P., Lu, H., Li, S., Wu, Y., Gao, G. F. and Su, J. L., 2013. Duck egg drop syndrome virus: an emerging Tembusu-related flavivirus in China. Science China Life Sciences, 56, 701–710CrossRefPubMedGoogle Scholar
  47. Luca, V.C., AbiMansour, J., Nelson, C. A. and Fremont, D. H., 2012. Crystal Structure of the Japanese encephalitis virus envelope protein. Journal of Virology, 86, 2337–2346CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lyons, A. C., Park, S. L., Ayers, V. B., Hettenbach, S. M., Higgs, S., Mcvey, D. S., Noronha, L., Hsu, W.W. and Vanlandingham, D. L, 2018. Shedding of Japanese encephalitis virus in oral fluid of infected swine. Vector-borne and zoonotic diseases, 18, 469–474CrossRefPubMedGoogle Scholar
  49. Macdonald, W.W., Smith, C.E.G. and Webb, H.E., 1965. Arbovirus infections in Sarawak; observations on the mosquitoes. Journal of Medical Entomology, 4, 335–347CrossRefGoogle Scholar
  50. Mackenzie, J.S. and Williams, D.T., 2009. The zoonotic Flaviviruses of Southern, South-Eastern and Eastern Asia, and Australasia: the potential for emergent viruses. Zoonoses and Public Health, 56, 338–356CrossRefPubMedGoogle Scholar
  51. Mackenzie, J.S., Lindsay, M.D., Coelen, R.J., Broom, A.K., Hall, R.A. and Smith, D.W., 1994. Arboviruses causing human disease in the Australasian zoogeographic region. Archives of Virology, 136, 447–467CrossRefPubMedGoogle Scholar
  52. Mackenzie, J.S., Gubler, D.J. and Petersen, L.R., 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue. Nature Medicine Supplement, 10, S98-S109CrossRefGoogle Scholar
  53. Mackenzie, J.S., Williams, D.T. and Smith, D.W., 2006. Japanese encephalitis virus: the geographic distribution, incidence, and spread of a virus with a propensity to emerge in new areas. Perspectives in medical virology, 16, 201–268CrossRefGoogle Scholar
  54. Mansfield, K.L., Horton, D. L., Johnson, N., Li, L., Barrett, A.D.T., Smith, D.J., Galbraith, S.E., Solomon, T. and Fooks, A.R., 2011. Flavivirus-induced antibody cross-reactivity. Journal of General Virology, 92, 2821–2829CrossRefPubMedGoogle Scholar
  55. Marchette, N. J., 1994. Arboviral zoonoses of Asia. In: George, W. Beran and James H. Steele (eds), Handbook of zoonoses viral zoonoses, (CRC Press: United State of America), 275–288Google Scholar
  56. Marchette, N.J., Garcia, R. and Rundnick, A., 1969. Isolation of Zika virus from Aedes Aegypti Mosquitoes in Malaysia. The America Journal of Tropical Medicine and Hygiene, 18, 411–415CrossRefGoogle Scholar
  57. Modis, Y., Ogata, S., Clements, D. and Harrison, S. C., 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 100, 6986–6991CrossRefPubMedPubMedCentralGoogle Scholar
  58. Modis, Y., Ogata, S., Clements, D. and Harrison, S. C., 2005. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. Journal of Virology, 79, 1223–1231CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mohd Zaki, A.H., Brett, J., Ismail, E. and L’Azou, M., 2014. Epidemiology of dengue disease in Malaysia (2000-2012): a systematic literature review. PLoS Neglected Tropical Diseases, 8, 1–9CrossRefGoogle Scholar
  60. Monath, T.P. and Heinz, F.X., 1996. Flaviviruses. In: B. N. Fields, D. M. Knipe, P. M. Howley, R. M. Chanock, J. L. Melnick, T.P. Monath, B. Roizman and S.E. Straus (eds), Fields virology, Philadelphia, Lippincott-Raven), pp. 961–1034Google Scholar
  61. Mudin, R.N., 2015. Dengue incidence and the prevention and control program in Malaysia. The International Medical Journal Malaysia, 14, 5–9Google Scholar
  62. Mukhopadhyay, S., Kim, B., Chipman, P. R., Rossmann, M. G. and Kuhn, R. J., 2003. Structure of West Nile Virus. Science, 302, 248CrossRefPubMedGoogle Scholar
  63. Mustafa, M.S., Rasotgi, C. V, Jain, C.S., Col, L. and Gupta, V., 2014. Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Medical Journal Armed Forces India, 71, 67–70CrossRefGoogle Scholar
  64. Nath, B., Gupta, A., Khan, S.A. and Kumar, S., 2017. Enhanced cytopathic effect of Japanese encephalitis virus strain SA14-14-2: probable association of mutation in amino acid of its envelope protein. Microbial Pathogenesis, 1, 187–192CrossRefGoogle Scholar
  65. Newman, C.M., Dudley, D.M., Aliota, M.T., Weiler, A.M., Barry, G.L., Mohns, M.S., Breitbach, M.E., Stewart, L.M., Buechler, C.R., Graham, M.E., Post, J., Schultz-Darken, N., Peterson, E., Newton, W., Mohr, E.L., Capuano, S. 3rd, O'Connor, D.H. and Friedrich, T.C., 2017. Oropharyngeal mucosal transmission of Zika virus in rhesus macaques. Nature Communications, 8, 169CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nowak, T. and Wengler, G., 1987. Analysis of disulfides presents in the membrane proteins of the West Nile flavivirus. Virology, 156, 127–137CrossRefPubMedGoogle Scholar
  67. Nybakken, G.E., Oliphant, T., Johnson, S., Burke, S., Diamond, M. S. and Fremont, D.H., 2005. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature, 437, 764–768CrossRefPubMedGoogle Scholar
  68. O’Guinn, M. L., Turell, M. J., Kengluecha, A., Jaichapor, B., Kankaew, P., Miller, R.S., Endy, T.P., Jones, J.W., Coleman, R.E and Lee, J.S., 2013. Field detection of Tembusu virus in western Thailand by RT-PCR and vector competence determination of select Culex mosquitoes for transmission of the virus. American Journal of Tropical Medicine and Hygiene, 89, 1023–1028Google Scholar
  69. Olson, J.G., Ksiazek, T.G., Gubler, D.J., Lubis, S.I., Simanjuntak, G., Lee, V.H., Nalim, S., Juslis, K. and See, R, 1983. A survey for arboviral antibodies in sera of humans and animals in Lombok, Republic of Indonesia. Annals of Tropical Medicine & Parasitology, 77, 131–137CrossRefGoogle Scholar
  70. Pang, E. L. and Loh, H. S., 2016. Current perspectives on dengue episode in Malaysia. Asian Pacific Journal of Tropical Medicine. 9, 395–401CrossRefPubMedGoogle Scholar
  71. Parija, S.C., 2012. Textbook of Microbiology and Immunology (2nd Edition), (Reed Elsevier India Private Limited, Manesar)Google Scholar
  72. Paterson, P.Y., Ley, H.L., Pond, W.L., Deebcks, F.H., Hetheeington, H.D.G. and Lancaster, W.E., 1952. Japanese encephalitis in Malaya. L isolation of virus and serological evidence of human and equine infections. The America Journal of Tropical Medicine and Hygiene, 66, 320–330Google Scholar
  73. Paul, L. M., Carlin, E. R., Jenkins, M. M., Tan, A. L., Barcellona, C. M., Nicholson, C. O., Michael, S.F. and Sharon Isern, S., 2016. Dengue virus antibodies enhance Zika virus infection. Clinical & Translational Immunology, 5, e117–e119CrossRefGoogle Scholar
  74. Payne, S., 2017. Viruses: from understanding to investigation, (Academic Press, London)Google Scholar
  75. Peters, J. H., 2012. Approaches for the development of rapid serological assays for surveillance and diagnosis of infections caused by zoonotic flaviviruses of the Japanese encephalitis virus serocomplex. Journal of Biomedicine and Biotechnology, 2012, 1–15Google Scholar
  76. Platt, G.S., Way, H.J., Bowen, E.T.W., Simpson, D.I.H., Hill, M.N., Kamath, S., Bendell, P.J. and Heathcote, O.H., 1973. Arbovirus infections in Sarawak, October 1968—February 1970 Tembusu and Sindbis virus isolations from mosquitoes. Annals of Tropical Medicine & Parasitology, 69, 65–71CrossRefGoogle Scholar
  77. Pond, W.L., 1963. Arthropod-borne virus antibodies in sera from residents of South-East Asia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 57, 364–371CrossRefPubMedGoogle Scholar
  78. Prakash, S., 2017. Role of real time PCR in diagnosis of Japanese encephalitis virus in acute encephalitis cases. Virology and Mycology, 6, 27Google Scholar
  79. Price, W.H., Thind, I.S., O’Leary, W., and El Dadah, A.H., 1967. A protective mechanism induced by live group B arboviruses against heterologous group B arboviruses independent of serum neutralizing antibodies or interferon. American Journal Epidemiology, 86, 11–27CrossRefGoogle Scholar
  80. Prikhod'ko, G.G., Prikhod'ko, E.A., Cohen, J.I. and Pletnev, A.G., 2001. Infection with langat flavivirus or expression of the envelope protein induces apoptotic cell death. Virology, 286, 328–335CrossRefPubMedGoogle Scholar
  81. Priyamvada, L., Quicke, K. M., Hudson, W.H., Onlamoon, N., Sewatanon, J., Edupuganti, S., Pattanapanyasat, K., Chokephaibulkit, K., Mulligan, M.J., Wilson, P.C., Ahmed, R., Suthar, M.S. and Wrammert, J., 2016. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proceedings of the National Academy of Sciences of the United States of America, 113, 7852-7857CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rey, F.A., Heinz, F.X., Mandl, C.W., Kunz, C., and Harrison, S.C., 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 A° resolution. Nature, 375, 291–298CrossRefPubMedGoogle Scholar
  83. Ricklin, M. E., García-Nicolás, O., Brechbühl, D., Python, S., Zumkehr, B., Nougairede, A., Charrel, R.N., Posthaus, H., Oevermann, A. and Summerfielda, A., 2016. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nature Communications, 7, 10832CrossRefPubMedPubMedCentralGoogle Scholar
  84. Roehrig, J. T., 2003. Antigenic structure of Flavivirus Proteins. Advances in Virus Research, 59, 141–175CrossRefPubMedGoogle Scholar
  85. Rumyantsev, A.A., Murphy, B.R. and Pletnev, A.G., 2006. A tick-borne langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice. Journal of Virology, 80, 1427–1439CrossRefPubMedPubMedCentralGoogle Scholar
  86. Schweitzer, B.K., Chapman, N.M. and Iwen, P.C. 2009. Overview of the Flaviviridae with an emphasis on the Japanese encephalitis group viruses. Laboratory Medicine, 40, 493–499CrossRefGoogle Scholar
  87. Sejvar, J.J., 2014. Clinical manifestations and outcomes of West Nile virus infection. Viruses, 6, 606–623CrossRefPubMedPubMedCentralGoogle Scholar
  88. Skae F.M.T., 1902. Dengue fever in Penang. British Medical Journal, 2, 1581–1582CrossRefPubMedPubMedCentralGoogle Scholar
  89. Smith, C.E.G., 1956a. Isolation of three strains of type 1 dengue virus from a local outbreak of the disease in Malaysia. Journal of Hygiene, 54, 569–580CrossRefPubMedGoogle Scholar
  90. Smith, C.E.G., 1956b. A virus resembling Russian spring-summer Encephalitis virus from an Ixodid tick in Malaya. Nature, 178, 581–582CrossRefPubMedGoogle Scholar
  91. Smith, D.R., 2012. A flavivirus compendium, (Institute of Molecular Biosciences and Center for Emerging and Neglected Infectious Diseases, Mahidol University, Nakhon Pathom)Google Scholar
  92. Smith, C.E.G., Simpson, D.I.H., Bowen, E.T.W., Peto, S., McMahon, D., Platt, G.S., Way, H., Bringt, W.F. and Maidment, B., 1974. Arbovirus infections in Sarawak: human serological studies. Transactions of the Royal Society of Tropical Medicine and Hygiene, 68, 96–104CrossRefGoogle Scholar
  93. Smithburn, K.C., 1953. Neutralizing antibodies against arthropod-borne viruses in the sera op long-time residents of Malaya and Borneo. American Journal of Hygiene, 59, 157–163Google Scholar
  94. Solomon, T., Dung, N.M., Kneen, R., Gainsborough, M., Vaughn, D.W. and Khanh, V.T., 2000. Japanese encephalitis. Journal of Neurology, Neurosurgery & Psychiatry, 68, 405–415CrossRefGoogle Scholar
  95. Stiasny, K. and Heinz, F. X., 2006. Flavivirus membrane fusion. Journal of General Virology. 87, 2755–2766CrossRefPubMedGoogle Scholar
  96. Su, J., Li, S., Hu, X., Yu, X., Wang, Y., Liu, P., Lu, X., Zhang, G., Hu, X., Liu, D., Li, X., Su, W., Lu, H., Mok, N.S., Wang, P., Wang, M., Tian, K. and Gao, G.F., 2011. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PLoS ONE, 6, 1–10Google Scholar
  97. Sudeep, A.B., Bondre, V.P., Mavale, M.S., Ghodke, Y.S., George, R.P. and Aher, R.V. 2013. Preliminary findings on Bagaza virus (Flavivirus: Flaviviridae) growth kinetics, transmission potential & transovarial transmission in three species of mosquitoes. Indian Journal of Medical Research, 138, 257–261PubMedGoogle Scholar
  98. Teixeira, M.G., Costa, Mda. G., de Oliveira, W.K., Nunes, M.L. and Rodrigues, L.C., 2016. The epidemic of Zika virus-related microcephaly in Brazil: detection, control, etiology, and future scenarios. American Public Health Association, 106, 601–605Google Scholar
  99. Tesh, R.B., Travassos Da Rosa, A.P., Guzman, H., Araujo, T.P. and Xiao, S.Y., 2002. Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerging Infectious Diseases journal, 8, 245–251CrossRefGoogle Scholar
  100. Thongyuan, S. and Kittayapong, P., 2017. First evidence of dengue infection in domestic dogs living in different ecological settings in Thailand. PLoS ONE, 12, e0180013CrossRefPubMedPubMedCentralGoogle Scholar
  101. Upadhyay, K.R., 2013a. Biomarkers in Japanese encephalitis: a review. BioMed Research International, 2013, 591290Google Scholar
  102. Upadhyay, K.R., 2013b. Japanese encephalitis virus generated neurovirulence, antigenicity, and host immune responses. International Scholarly Research Notices: Virology, 1–24Google Scholar
  103. Vinomarlini, G., Rogayah, T., Saraswathy, T.S., Thayan, R., Apandi M., Fauziah, M.K. and Saat, Z., 2011. Molecular typing of dengue viruses circulating on the east coast of Peninsular Malaysia from 2005 to 2009. The Southeast Asian Journal of Tropical Medicine and Public Health 42, 94–99PubMedGoogle Scholar
  104. Vythilingam, I., Oda, K., Tsuchie, H., Mahadevan, S. and Vijayamalar, B., 1994. Isolation of Japanese encephalitis virus from Culex sitiens mosquitoes in Selangor, Malaysia . Journal of the American Mosquito Control Association, 10, 228–229PubMedGoogle Scholar
  105. Westaway, E.G., Brinton, M.A., Gaidamovich, S., Horzinek, M.C., Igarashi, A., Kaariainen, L., Lvov, D.K., Porterfield, J.S., Russell, P.K. and Trent, D.W., 1985. Flaviviridae. Intervirolgy, 24, 183–192CrossRefGoogle Scholar
  106. Whitehead, R.L., Doherty, R.L., Domrow, R., Standfast, H.A. and Welters, E.J., 1968. Studies of the epidemiology of arthropod-borne virus infections at Mitchell River Mission. Cape York Peninsula, north Queensland. III. Virus studies of wild birds 1964-1967. Transactions of the Royal Society of Tropical Medicine and Hygiene, 62, 439–445CrossRefPubMedGoogle Scholar
  107. Wolfe, N.D., Kilbourn, A.M., Karesh, W.B., Rahman, H.A., Bosi, E.J., Cropp, B.C., Andau, M., Spielman, A. and Gubler, D.J., 2001. Sylvatic transmission of arboviruses among Bornean orangutans. The American Journal of Tropical Medicine and Hygiene, 64, 310–316CrossRefPubMedGoogle Scholar
  108. Wong, S. C., Ooi, M. H., Abdullah, A. R., Wong, S. Y., Krishnan, S., Tio, P. H., Pek, P.C., Lai, B.F., Mohan, A., Muhi, J., Kiyu, A., Arif, M.T. and Cardosa, M.J., 2008. A decade of Japanese encephalitis surveillance in Sarawak, Malaysia: 1997-2006. Tropical Medicine and International Health, 13, 52–55CrossRefPubMedGoogle Scholar
  109. Wu, X., Lin, H., Chen, S., Xiao, L., Yang, M., An, W., Wang Y., Yao X. and Yang Z., 2017. Development and application of a reverse transcriptase droplet digital PCR (RT-ddPCR) for sensitive and rapid detection of Japanese encephalitis virus. Journal of Virological Methods, 248, 166–171CrossRefPubMedGoogle Scholar
  110. Young P.R., Ng, L.F.P., Hall, R.A., Smith, D.W. and Johansen, C.A., 2013. Arbovirus Infection. In: G.C. Cook and A. Zumla (eds), Manson’s tropical diseases. Saunders Elsevier), 129-161Google Scholar
  111. Yu, I.M., Zhang, W., Holdaway, H.A., Li, L., Kostyuchenko, V.A., Chipman, P.R., Kuhn, R.J., Rossmann, M.G. and Chen, J., 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319, 1834–1837CrossRefPubMedGoogle Scholar
  112. Zhang, Y., Zhang, W., Ogata, S., Clements, D., Strauss, J.H., Baker, T.S., Kuhn, R.J. and Rossmann, M.G., 2004. Conformational changes of the flavivirus E glycoprotein. Structure, 12, 1607–1618CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zhang, X., Ge, P., Yu, X., Brannan, J.M., Bi, G., Zhang, Q., Schein, S., and Zhou, Z.H., 2013. Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nature Structural & Molecular Biology, 20, 105–110CrossRefGoogle Scholar
  114. Zhang, X., Jia, R., Shen, H., Wang, M., Yin, Z., and Cheng, A. 2017. Structures and functions of the envelope glycoprotein in Flavivirus infections. Viruses, 9, 338–352CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Veterinary Pathology and Microbiology, Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Veterinary Clinical Studies, Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Veterinary Clinical Studies, Faculty of Veterinary Faculty Medicine City CampusUniversiti Malaysia KelantanKota BharuMalaysia

Personalised recommendations