Advertisement

Tropical Animal Health and Production

, Volume 50, Issue 1, pp 43–48 | Cite as

A panel of protein candidates for comprehensive study of Caprine Arthritis Encephalitis (CAE) infection

  • Rosivaldo Quirino Bezerra Júnior
  • Ângela Maria Xavier EloyEmail author
  • João Ricardo Furtado
  • Raymundo Rizaldo Pinheiro
  • Alice Andrioli
  • Frederico Bruno Moreno
  • Marina Duarte Pinto Lobo
  • Ana Cristina O. Monteiro-Moreira
  • Renato de Azevedo Moreira
  • Tatiana Maria Farias Pinto
  • Maria Fátima da Silva Teixeira
Regular Articles

Abstract

The caprine arthrite encephalite (CAE) is a disease that affects especially dairy goat. The virus shows compartmentalization features, that allows it to hide at certain times during the course of the disease, making it difficult to control. The present study was conducted to identify the major seminal plasma protein profile of goats infected by CAE and its associations with seroconversion using Western blotting. Two groups containing five males each, were used in this experiment. The first group was composed by seropositive animals and the control by seronegative confirmed by Western blotting and PCR. The semen was collected through artificial vagina and after that, two-dimensional electrophoresis and MALDI-TOF MS were used. Seventy-five spots were identified in the goat seminal plasma gels, equivalent to 13 different proteins with more expression. The similar proteins found in both groups and related to reproduction were spermadhesin Z13-like, bodhesin and bodhesin-2, Lipocalin, protein PDC-109-like, and albumin. In infected goats, proteases such as arisulfatase A have been identified, whose function probably is related to metabolism control of sulfatides, involved to virus control. The other ones were bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase, cathepsin F isoform X1, disintegrin and metalloproteinase domain-containing protein 2-like isoform X1, clusterin, carbonic anhydrase 2, electron transfer flavoprotein subunit beta, and epididymal secretory glutathione peroxidase. The results of this study show the reaction of the innate immune system against chronic infection of goats by CAE.

Keywords

Virus disease Seminal plasma Proteomic Biomarkers 

References

  1. Aguzzi, A., O'Connor, T., 2010. Protein aggregation diseases: pathogenicity and therapeutic perspectives, Nature Reviews Drug Discovery, 9, 237–248CrossRefGoogle Scholar
  2. Andrioli, A., Gouveia, A.M.G., Martins, A.D.S., Pinheiro, R.R., Santos, D.O., 2006. Fatores de risco na transmissão do lentivírus caprino pelo sêmen, Pesquisa Agropecuária Brasileira, 41, 1313–1319CrossRefGoogle Scholar
  3. Asuvapongpatana, S., Saewu, A., Chotwiwatthanakun, C., Vanichviriyakit, R., Weerachatyanukul, W., 2013. Localization of cathepsin D in mouse reproductive tissues and its acquisition onto sperm surface during epididymal sperm maturation, Acta Histochemistry, 115, 425–433CrossRefGoogle Scholar
  4. Bezerra Júnior, R.Q., Eloy, A.M.X., Pereira, E.P., Furtado, J.R., Souza, K.C., Lima, A.R., Pinheiro, R.R., Andrioli, A., Teixeira, M.F.S., 2015. Avaliação das metaloproteinases de matriz no sangue de reprodutores caprinos naturalmente infectados com Artrite Encefalite Caprina na Região Semiárida do Brasil, Acta Scientiae Veterinariae, 43, 1–7Google Scholar
  5. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  6. Colégio Brasileiro de Reprodução Animal (CBRA), 2013. Manual para exame andrológico e avaliação do sêmen animal, (Colégio Brasileiro de Reprodução Animal, Belo Horizonte) 91 p.Google Scholar
  7. Crampton, S.P.,Deane, J.A., Feigenbaum, L., Bolland S. 2012. Ifih1 gene dose effect reveals MDA5-mediated chronic type I IFN gene signature, viral resistance and accelerated autoimmunity, Journal of Immunology, 188, 1451–1459CrossRefGoogle Scholar
  8. Diao, F., Li, S., Tian, Y., Zhang, M., Xu, L.G., Zhang, Y., Wang, R.P., Chen, D., Zhai, Z., Zhong, B., Tien, P., Shu, H.B., 2007. Negative regulation of MDA5-but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proceedings of the National Academy of Sciences of USA, (National Academy of Sciences of USA, 104), 11706–11711Google Scholar
  9. Evermann, J.F., 2002. Control of CAE virus takes work and periodic testing, United Caprine News, Winter, 2002 updateGoogle Scholar
  10. Gadella, B.M., Colenbrander, B., Lopes-Cardozo, M., 1991. Arylsulfatases are present in seminal plasma of several domestic mammals, Biology of Reproduction, 45, 381–386CrossRefGoogle Scholar
  11. Greene, M.J., Sam, F., Hoo, P.T.S., Patel, R.S., Seldin, D.C., Connors, L.H., 2011. Evidence for a Functional Role of the Molecular Chaperone Clusterin in Amyloidotic Cardiomyopathy, American Journal of Pathology, 178, 61–68CrossRefGoogle Scholar
  12. Hanash, S., 2003. Disease proteomics, Nature, 422, 226–232CrossRefGoogle Scholar
  13. Malmgaard, L., 2004. Induction and regulation of IFNs during viral infections, Journal of Interferon Cytokine Research, 24, 439–54CrossRefGoogle Scholar
  14. Matzner, U., Herbst, E., Hedayati, K.K., Lüllmann-Rauch, R., Wessig, C., Schröder, S., Eistrup, C., Möller, C., Fogh, J., Gieselmann, V., 2005. Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy, Human Molecular Genetics, 14, 1139–52CrossRefGoogle Scholar
  15. Moura, A.A., Souza, C.E.A., Stanley, B.A., Chapman, D.A., Killian, G.J., 2010. Proteomics of cauda epididymal fluid from mature Holstein bulls, Journal of Proteomics, 73, 2006–2020CrossRefGoogle Scholar
  16. O’Farrell, P.H., 1975. High resolution two–dimensional electrophoresis of proteins, Journal of Biology and Chemistry, 25, 4007–4021Google Scholar
  17. Oliveira, M.L.M., Ávila, A., Silva, P.A.F., Sousa, S., Andrioli, A., 2012. Avaliação seminal de reprodutores acometidos pelo vírus da artrite encefalite caprina. In: Embrapa Caprinos e Ovinos (Ed.), Proceedings of the 1fist Encontro de Iniciação Científica da Embrapa Caprinos e Ovinos, Sobral, 2012, (Embrapa Caprinos e Ovinos. Documentos, 104p, Annual Publication), 47–48Google Scholar
  18. Paula, N.R.O., Andrioli, A., Cardoso, J., Pinheiro, R.R., Sousa, F.M.L., Souza, K.C., Alves, F.S.F., Teixeira, M.F.S., 2009. Andrologic characteristics of male goats naturally infected by small ruminant lentivirus during dry and rainy seasons in Ceará, Ciencia Animal, 19, 7–18Google Scholar
  19. Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S., 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, 20, 3551–3567CrossRefGoogle Scholar
  20. Perry, A.K., Chen, G., Zheng, D., Tang, H., Cheng, G., 2005. The host type I interferon response to viral and bacterial infections, Cell Research, 15, 407–422CrossRefGoogle Scholar
  21. Rodrigues, A.S., Brito, R.L.L., Pinheiro, R.R., Dias, R.P., Alves, S.M., Souza, T.S., Souza, K.C., Azevedo, D.A.A., Andrioli, A., Magalhães, D.C.T., Teixeira, M.F.S., 2014. Standardization of indirect Elisa and Western Blot for diagnosis of Caprine Arthritis-Encephalitis, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 66, 417–424CrossRefGoogle Scholar
  22. Rosenberg, M.E., Silkensen, J., 1995. Clusterin: physiologic and pathophysiologic considerations, International Journal of Biochemistry and Cell Biology, 27, 633–645CrossRefGoogle Scholar
  23. Santos, L.M.M., Nascimento, E.R., Almeida, J.F., Meireles, K.C., Castro, R.S., Pereira, V.L.A., 2009. Detecção da infecção pelo vírus da artrite encefalite caprina (caev) pela imunodifusão em gel de agarose (IDGA) e reação em cadeia da polimerase (PCR), In: Ciência Animal Brasileira, Procedings of VIII Congresso Brasileiro de Buiatria, 2009, Belo Horizonte, Suplemento 1Google Scholar
  24. Schiff, M., Froissart, R., Olsen, R.K.J., Acquaviva, C., Vianey-Saban, C., 2006. Electron transfer flavoprotein deficiency: Functional and molecular aspects, Molecular Genetics and Metabolism, 88, 153–158CrossRefGoogle Scholar
  25. Shevchenko, A., Tomas, H., Havli, J., Olsen, J.V., Mann, M., 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes, National Protocol, 1, 2856–2860CrossRefGoogle Scholar
  26. Souza, C.E.A., Rego, J.P.A., Lobo, C.H., Oliveira, J.T.A., Nogueira, F.C., Domont, G.B., Fioramonte, M., Gozzo, F.C., Moreno, F.B., Monteiro-Moreira, A.C., Figueiredo, J.R., Moura, A.A., 2012. Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams, Journal of proteomics, 75, 4436–4456CrossRefGoogle Scholar
  27. Souza, K.C., Pinheiro, R.R., Santos, D.O., Brito, R.L.L., Rodrigues, A.S., Sider, L.H., Ávila, A.A., Souza, M.S., Kunkel, D., Cardoso, J.F.S., Paula, N.R.O., Andrioli, A., 2013. Transmission of the caprine arthritis–encephalitis virus through artificial insemination, Small Ruminant Research, 109, 193–198CrossRefGoogle Scholar
  28. Stefani, M., Dobson, C.M., 2003. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution, Journal of Molecular Medicine, 81, 678–99CrossRefGoogle Scholar
  29. Takahashi, T., Suzuki, T., 2012. Role of sulfatide in normal and pathological cells and tissues. The Journal of Lipid Research, 53, 1437–1450CrossRefGoogle Scholar
  30. Universal Protein Resource (UNIPROT) Available at: http://www.uniprot.org/uniprot/Q3LXA3. Accessed: March 2017
  31. Wandernoth, P.M., Mannowetz, N., Szczyrba, J., Grannemann, L., Wolf, A., Becker, H.M., William S. Sly, W.S. Gunther, Wennemuth, G., 2015. Normal fertility requires the expression of carbonic anhydrases II and IV in sperm, Journal of Biology and Chemistry, 290, 29202–29216CrossRefGoogle Scholar
  32. Wang, D. , Lu, X., Zhang, X., Li, Z., Li, C. , 2015. Carbonic Anhydrase 1 is a promising biomarker for early detection of non-small cell lung cancer, Tumour Biology, 37, 553–559CrossRefGoogle Scholar
  33. Weidenhaupt, M., Rossi, P., Beck, C., Fischer, H.M., Hennecke, H. 1996. "Bradyrhizobium japonicum possesses two discrete sets of electron transfer flavoprotein genes: fixA, fixB and etfS, etfL", Archive of Microbiology, 165, 169–78Google Scholar
  34. Xiao, S., Finkielstein, C.V., Capelluto, D.G., 2013. "The enigmatic role of sulfatides: new insights into cellular functions and mechanisms of protein recognition", Advances in Experimental Medicine and Biology, 991, 27–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Rosivaldo Quirino Bezerra Júnior
    • 1
  • Ângela Maria Xavier Eloy
    • 2
    Email author
  • João Ricardo Furtado
    • 2
  • Raymundo Rizaldo Pinheiro
    • 2
  • Alice Andrioli
    • 2
  • Frederico Bruno Moreno
    • 3
  • Marina Duarte Pinto Lobo
    • 3
  • Ana Cristina O. Monteiro-Moreira
    • 3
  • Renato de Azevedo Moreira
    • 3
  • Tatiana Maria Farias Pinto
    • 4
  • Maria Fátima da Silva Teixeira
    • 1
  1. 1.Laboratory of Virology (LABOVIR)Ceará State University (UECE)FortalezaBrazil
  2. 2.Brazilian Agricultural Research Corporation (EMBRAPA Goats and Sheep)SobralBrazil
  3. 3.Center of Experimental Biology (Nubex)University of Fortaleza (UNIFOR)FortalezaBrazil
  4. 4.Molecular Biology LaboratoryVale do Acaraú State UniversitySobralBrazil

Personalised recommendations