Tropical Animal Health and Production

, Volume 49, Issue 8, pp 1657–1662 | Cite as

Detection of QTL for greasy fleece weight in sheep using a 50 K single nucleotide polymorphism chip

  • Fatemeh Ebrahimi
  • Mohsen Gholizadeh
  • Ghodrat Rahimi-Mianji
  • Ayoub Farhadi
Regular Articles


Genome-wide association studies (GWAS) have introduced an influential tool in the search for quantitative trait loci (QTL) influencing economically important traits in sheep. To identify QTL associated with greasy fleece weight, a GWAS with 50 K single nucleotide polymorphisms (SNPs) was performed in a Baluchi sheep population. Association with greasy fleece weights was tested using the software Plink. The results of our GWAS provided three novel SNP markers and candidate genes associated with greasy fleece weight. A total of three chromosome-wide significant associations were detected for SNP on chromosomes 17 and 20 affecting greasy fleece weight across the four shearing. One of the significant SNP markers was located within ovine known genes namely FAM101A. Further investigation of these identified regions in validation studies will facilitate the identification of strong candidate genes for wool production in sheep.


Genome-wide association Sheep Wool production Quantitative trait loci 



This study was supported by Iran National Science Foundation (INSF). We also wish to thank Manager of Abbasabad sheep breeding station, Mashhad, Iran, for providing the data and samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdi, H., 2007. Bonferroni and Šidàk corrections for multiple comparisons. In Encyclopedia of Measurement and Statistics. Thousand Oaks,103-107.Google Scholar
  2. Allain, D., Schibler, L., Mura, L., Barillet, F. and Sechi T,. Rupp, R., Casu, S., Cribiu, E.P. and Carta, A., 2006. QTL detection with DNA markers for wool traits in a sheep backcross SARDA X LACAUNE resource population. 8th World Congress on Genetics Applied to Livestock Production.Google Scholar
  3. Andersson, L. and Georges, M., 2004. Domestic-animal genomics: deciphering the genetics of complex traits. Nature Review Genetics, 5, 202–212.CrossRefGoogle Scholar
  4. Barrett, J.C., Fry, B., Maller, J. and Daly, M. J., 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21, 263–265 .CrossRefPubMedGoogle Scholar
  5. Beh, K.J., Callaghan, M.J., Leish, Z., Hulme, D.J., Lenane, I. and Maddox, J.F., 2001. A genome scan for QTL affecting fleece and wool traits in Merino sheep. Wool Technology and Sheep Breeding, 49, 88–97.Google Scholar
  6. Bidinost, F., Roldan, D.L., Dodero, A.M., Cano, E.M., Taddeo, H.R., Mueller, J.P. and Poli, M.A., 2008. Wool quantitative trait loci in Merino sheep. Small Ruminant Research, 74, 113–118.CrossRefGoogle Scholar
  7. Cano, E.M., Daverio, S., Cáceres, M., Debenedetti, S., Costoya, S., Abad, M., Allain, D., Taddeo, H., Poli, M.A., 2009. Detection of QTL affecting fleece traits on CHI 19 in Angora goats. Trop and Subtropical Agroecosystems. 11, 189–191.Google Scholar
  8. Chen, H.Y., Zeng, X.C., Hui, W.Q., Zhao, Z.S., Jia, B. 2011. Developmental expression patterns and association analysis of sheep KAP8.1 and KAP1.3 genes in Chinese Merino sheep. Indian Journal of Animal Sciences, 81, 391–396.Google Scholar
  9. Debenedetti, S., Cano, E.M., Abad, M., Allain, D., Taddeo, H., Poli, M., 2010. Detection of QTL affecting fleece traits on CHI 5 in a backcross Angora × Creole goats in Argentina–Preliminary results. In: In Proc 9th World Congress on Genetics Applied to Livestock Production, August 1–6, 2010. Germany Communication, Leipzig, p. 0764.Google Scholar
  10. Fogarty, N.M., 2006. Utilization of breed resources for sheep production. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, MG, Brazil (Communication 32–10).Google Scholar
  11. Garcia-Gamez E., Gutierrez Gil, B., Sahana, G., Sanchez, J.P., Bayon, Y. and Arranz, J.J., 2012. GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene. PLoS One, 7, e47782.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Goddard, M.E. and Hayes, B.J., 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10: 381–391.CrossRefPubMedGoogle Scholar
  13. Hu, Z.L., Park, C.A., Wu, X.L. and Reecy, J.M., 2012. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Resesrch, 41, D871–9.CrossRefGoogle Scholar
  14. Jiang, L., Liu, J., Sun, D., Ma, P., Ding, X., Yu, Y. and Zhang, Q., 2010. Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One, 5, e13661.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Johnston, S.E., McEwan, J.C., Pickering, N.K., Kijas, J.W., Beraldi, D., Pilkington, J.G., Pemberton AND J.M. and Slate, J., 2011. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Molecular Ecology, 20, 2555–66.Google Scholar
  16. Li, Q. and Yu, K., 2008. Improved correction for population stratification in genome-wide association studies by identifying hidden population structures. Genetic Epidemiology, 32, 215–226.CrossRefPubMedGoogle Scholar
  17. Ling, Y.H., Xiang, H., Zhang, G., Ding, J.P., Zhang, Z.J., Zhang, Y.H., Han, J.L., Ma, Y.H., Zhang, X.R., 2014. Identification of complete linkage disequilibrium in the DSG4 gene and its association with wool length and crimp in Chinese indigenous sheep. Genetics and Molecular Research 13, 5617–5625.Google Scholar
  18. Li, S., Zhou, H., Gong, H., Zhao, F., Wang, J., Liu, X., Luo, Y., Hickford, J.G.H., 2017. Identification of the Ovine Keratin-Associated Protein 22–1 (KAP22-1) Gene and its effect on wool traits. Genes, 8, 27.Google Scholar
  19. Ma, G-W., Chu, Y-K., Zhang, W-J., Qin, F-Y., Xu, S-S., Yang, H., Rong, E-G., Du, Z-Q., Wang, S-Z, Li, H., Wang, N. 2017. Polymorphisms of FST gene and their association with wool quality traits in Chinese Merino sheep. PLoS ONE, 12(4), e0174868.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Martyniuk, C.J., Perry, G.M.L., Mogahadam, H.K., Ferguson, M.M. and Danzmann, R.G., 2003. The genetic architecture of correlations among growth related traits and male age at maturation in rainbow trout. Journal of Fish Biology, 63, 746–764.CrossRefGoogle Scholar
  21. Matukumalli, L.K., Lawley, C.T., Schnabel, R.D., Taylor, J.F., Allan, M.F., et al., 2009. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One, 4, e5350.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Miller, S.A., Dykes, D.D. and Polesky, H.F., 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16, 1215.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mucha, S., Bunger, Lutz. and Conington, J., 2015. Genome-wide association study of footrot in Texel sheep. Genetics Selection Evolution, 47, 35CrossRefGoogle Scholar
  24. Ponz, R., Moreno, C., Allain, D., Elsen, J.M., Lantier, F., Lantier, I., Brunel, J.C. and Perez-Enciso, M., 2001. Assessment of genetic variation explained by markers for wool traits in sheep via a segment mapping approach. Mammalian Genome, 12, 569–572.CrossRefPubMedGoogle Scholar
  25. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J. and Sham, P.C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559–575.CrossRefPubMedGoogle Scholar
  26. Purvis, I.W. and Franklin, I.R., 2005. Major genes and QTL influencing wool production and quality: a review. Genetic Selection Evolution, 37 (Suppl. 1), S97–S107.CrossRefGoogle Scholar
  27. Roldan, D.L., Dodero, A.M., Bidinost, F., Taddeo, H.R., Allain, D., Poli, M.A. and Elsen, J.M., 2010. Merino sheep: a further look at quantitative trait loci for wool production. Animal, 4, 1330–40.CrossRefPubMedGoogle Scholar
  28. Rong, E.G., Yang, H., Zhang, Z. W., Wang, Z. P., Yan, X. H., Li, H. and Wang, N., 2015. Association of methionine synthase gene polymorphisms with wool production and quality traits in Chinese Merino population. Journal of Animal Science, 93, 4601–4609.CrossRefPubMedGoogle Scholar
  29. Shen, M., Qu, L., Ma, M., Dou, T., Lu, J., Guo J, Hu, Y., Yi, G., Yuan, J., Sun, C., Wang, K. and Yang, N 2016. Genome-wide association studies for comb traits in chickens. PLoS ONE, 11, e0159081.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Silva VH, Regitano LC, Geistlinger L, Pértille F, Giachetto PF, Brassaloti RA, Morosini, N.S., Zimmer, R. and Coutinho, L.L., 2016. Genome-wide detection of CNVs and their association with meat tenderness in Nelore cattle. PLoS ONE, 11, e0157711CrossRefPubMedPubMedCentralGoogle Scholar
  31. Simm, G., 1998. What affects response to selection within breeds? In: Genetic Improvement of Cattle and Sheep. Faming Press, Ipswich, pp. 107–146.Google Scholar
  32. Statistical Analysis System (SAS), 2004. SAS users’ guide, version 9.1. SAS Institute Inc, Cary, North Carolina, USA.Google Scholar
  33. Visser, C., Van Marle-Köster, E., Bovenhuis, H., Crooijmans, R.P.M.A., 2011. QTL for mohair traits in South African Angora goats. Small ruminant research, 100, 8–14.CrossRefGoogle Scholar
  34. Wang, D., Sun, Y., Stang, P., JA Berlin, Wilcox, M. A and Li, Q. 2009. Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: principal-component analysis versus multidimensional scaling. BMC Proceedings, Suppl 7, S109.CrossRefGoogle Scholar
  35. Wang, Z., Zhang, H., Yang, H., Wang, S., Rong, E., Pei, W., Li, H. and Wang, N., 2014. Genome-wide association study for wool production traits in a Chinese Merino sheep population. PLoS ONE, 9, e107101.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yazdi, M.H., Engström, G., Nasholm, A., Johansson, K., Jorjani, H. and Liljedah, L.E., 1997. Genetic parameters for lamb weight at different ages and wool production in Baluchi sheep. Animal Science, 65, 224–255.CrossRefGoogle Scholar
  37. Zeng, X.C., Chen, H.Y., Jia, B., Zhao, Z.S., Hui, W.Q., Wang, Z.B. and Du, Y.C., 2011. Identification of SNPs within the sheep PROP1 gene and their effects on wool traits. Molecular Biology Reports, 38, 2723–8.CrossRefPubMedGoogle Scholar
  38. Zhang, L., Liu, J., Zhao, F., Ren, H., Xu, L., Lu, J., Zhang, S., Zhang, X., Wei, C., Lu, G., Zheng, Y. and Du, L., 2013. Genome-wide association studies for growth and meat production traits in sheep. PLoS One, 8, e66569.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhang, C., Bruce, H., Yang, T., Charagu, P., Kemp, R.A., Boddicker, N., Miar Y, Wang, Z. and Plastow, G., 2016. Genome wide association studies (GWAS) identify QTL on SSC2 and SSC17 affecting loin peak shear force in crossbred commercial pigs. PLoS ONE, 11, e0145082.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhao, X., Dittmer, K.E., Blair, H.T., Thompson, K.G., Rothschild, M.F. and Garrick, D.J., 2011. A novel nonsense mutation in the DMP1 gene identified by a genome-wide association study is responsible for inherited rickets in Corriedale sheep. PLoS One, 6, e21739.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zhou, H., Gong, H., Li, S., Luo, Y., Hickford, J.G.H., 2015. A 57-bp deletion in the ovine KAP6-1 gene affects wool fibre diameter. Journal of Animal Breeding and Genetics, 132, 301–307.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Fatemeh Ebrahimi
    • 1
  • Mohsen Gholizadeh
    • 1
  • Ghodrat Rahimi-Mianji
    • 1
  • Ayoub Farhadi
    • 1
  1. 1.Department of Animal Science, Faculty of Animal and Aquatic ScienceSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations