Tropical Animal Health and Production

, Volume 49, Issue 4, pp 857–866 | Cite as

Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass

  • S. Albores-Moreno
  • J. A. Alayón-Gamboa
  • A. J. Ayala-Burgos
  • F. J. Solorio-Sánchez
  • C. F. Aguilar-Pérez
  • L. Olivera-Castillo
  • J. C. Ku-Vera
Regular Articles


An experiment was carried out to determine the effect of supplementing ground pods of Enterolobium cyclocarpum in a basal ration of Pennisetum purpureum grass on feed intake, rumen volatile fatty acids (VFAs), and protozoa and methane (CH4) production by hair sheep. Four male sheep (Pelibuey × Katahdin) with a mean live weight of 27.0 kg (SD ± 0.5) were supplemented with 0.00, 0.15, 0.30, and 0.45 kg of dry matter (DM) of E. cyclocarpum pods daily; equivalent to 0.00, 4.35, 8.70, and 13.05 g of crude saponins, respectively. Dry matter intake (DMI), organic matter intake (OMI), and molar proportions of propionic acid increased linearly (P < 0.05) as pods of E. cyclocarpum in the ration were increased. Higher intakes of DM and OM were found when lambs were fed 0.45 kg DM per day of E. cyclocarpum, and the highest proportion of propionic acid (0.21 and 0.22, respectively) was obtained with 0.15 and 0.30 kg of DM per lamb of E. cyclocarpum, while apparent digestibility of neutral detergent fiber (NDF) and molar proportion of acetic acid were reduced (P < 0.05). Rumen CH4 production decreased (P < 0.05) when 0.30 and 0.45 kg of DM/lamb/day of E. cyclocarpum were fed (21.8 and 25.3 L CH4/lamb/day, respectively). These results suggest that to improve the feeding of sheep fed tropical grass, it is advisable to supplement the basal ration with up to 0.30 kg DM of E. cyclocarpum pods.


Tree forages Saponins Greenhouse gases Mitigation Small ruminants 


Compliance with ethical standards

Care of the animals in this study followed the guidelines of Mexican federal law of animal health (DOF 25-07-2007) and the Yucatan state law on animal protection and welfare, signaling the care that should ensure all domestic animals.


  1. Anantosook, A., Wanapat, W. and Cherdthong, A., 2015. Effect of tannins and saponins in Samanea saman on rumen environment, milk yield and milk composition in lactating dairy cows, Journal of Animal Physiology and Animal Nutrition, 99, 335-44.CrossRefGoogle Scholar
  2. Archimède, H., Rira, M., Eugène, M., Morgavi, D.P., Anaïs, C., Periacarpin, F., Calif, B., Martin, C., Magdeleine, C. and Doreau, M., 2013. Intake, total-tract digestibility and methane emission of Texel and Blackbelly sheep fed C4 and C3 grasses tested simultaneously in a temperate and a tropical area,. Proceeding of the 5th Greenhouse and Animal Agriculture Conference (GGAA 2013). Advances in Animal Agriculture Bioscience,. 4, 285.Google Scholar
  3. Archimède, H., Martin, C., Periacarpin, F., Rochette, Y., Silou, T., Etienne, C. and Doreau, M., 2014. Methane emission of Blackbelly rams consuming whole sugarcane forage compared with Dichanthium sp. Hay., Animal Feed Science and Technology. 190, 30-37.CrossRefGoogle Scholar
  4. Belanche, A., Martin, G.A.I., Moorby, J.M. and Newbold, C.J., 2012. Effect of Holotrich protozoa on sheep methane emissions,. British Society of Animal science, 170 pp.Google Scholar
  5. Briceño, P.E.G, Ruiz, G.A., Chay, C.A.J., Ayala, B.A.J., Aguilar, P.C.F, Solorio, S.F.J. and Ku, V. J.C., 2012.Voluntary intake, apparent digestibility and prediction of methane production by rumen stoichiometry in sheep fed pods of tropical legumes,. Animal Feed Science and Technology, 176, 17-122.CrossRefGoogle Scholar
  6. Castro-Montoya, J. M., Makkar, H.P.S. and Becker, K., 2011. Chemical composition of rumen microbial fraction and fermentation parameters as affected by tannins and saponins using an in vitro rumen fermentation system,. Canadian Journal of Animal Science, 91(3), 433-448.CrossRefGoogle Scholar
  7. Cochran, W.G., Cox, G.M., 1991. Diseños Experimentales. 2ª Ed.-México. Trillas. p 661.Google Scholar
  8. Czerkawsky, J. W., 1986. An introduction to Rumen Studies. Pergamon Press, New York.Google Scholar
  9. Esquivel, M. H., Piñeiro, V.A., Bazán, G.J., Ayala, B.A., Espinoza, H.J. and Ku, V.C. J., 2010. Integration of Enterolobium cyclocarpum Jacq. Griseb tree with hair sheep production in the dry tropics,. Advances in Animal Biosciences, 1, 444-445.CrossRefGoogle Scholar
  10. Eugene, M., Archimèede, H. and Sauvant, D., 2004 Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants., Livestock Production Science, 85, 81-97.CrossRefGoogle Scholar
  11. FAO (Food and Agriculture Organization of the United Nations)., 2003. Determination of cell concentrations using haemocytometer according to Fuchs Rosenthal and Burker.
  12. Francis, G., Kerem, Z., Makkar, H.P.S. and Becker, K., 2002. The biological action of saponins in animal systems., British Society of Animal Science, 88, 587-605.Google Scholar
  13. Fraser, M. D., Fleming, H., Theobald, V. J., Sanderson, R. and Moorby, J. M., 2013. Effect of body size on feed intake and methane emission from ewes offered fresh forage. Proceeding of the 5th Greenhouse and Animal Agriculture Conference (GGAA 2013),. Advances in Animal Agriculture Bioscience, 4, 358.Google Scholar
  14. Galindo, J., González, N., Abdalla, A. L., Alberto, M., Lucas, R. C., Dos Santos, K. C., Santos, M.R., Louvandini, P., Moreira, O. and Sarduy, L., 2016. Effect of a raw saponin extract on ruminal microbial population and in vitro methane production with star grass (Cynodon nlemfuensis) substrate,. Cuban Journal of Agricultural Science, 50(1).Google Scholar
  15. García, E., 1973., Modifications to the Climate Classification System of Köppen, 2nd ed. Institute of Geography, National Autonomous University of Mexico, México City, (in Spanish).Google Scholar
  16. Goel, G., Makkar, H.P.D. and Becker, K., 2008. Effects of Sesbaniasesban and Carduuspycnocephalus leaves and Fenugreek (Trigonellafoenum-graecum L.) seed and their extracts on partitioning of nutrients from roughage and concentrate based feeds to methane,. Animal Feed Science and Technology, 147, 72-89.CrossRefGoogle Scholar
  17. Hess, H.D., Kreuzer, M., Diıaz, T.E., Lascano, C.E., Carulla, J.E., Soliva, C. R. and Machmüller, A., 2003a. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid,. Animal Feed Science and Technology, 109, 79-94.CrossRefGoogle Scholar
  18. Hess, H.D., Monsalve, L.M., Lascano, C.E., Carulla, J.E., Díaz, T.E., Kreuzer M 2003b. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis., Australian Journal of Agricultural Research, 54, 703-713.CrossRefGoogle Scholar
  19. Holtshausen, L., Chaves, A. V., Beauchemin, K. A., McGinn, S.M., McAllister, T. A., Odongo, N. E., Cheekeand P.R., and Benchaar, C., 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows,. Journal of Dairy Science, 92(6), 2809-2821.CrossRefPubMedGoogle Scholar
  20. Hu, W., Liu, J., Wu, Y., Guo Y. and Ye, J., 2006. Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat., Archive of Animal Nutrition, 60, 89-97.CrossRefGoogle Scholar
  21. Hungate, R.E., 1966. The Rumen and its Microbes.Academic Press, New York.Google Scholar
  22. Illius, A.W., Tolkamp, B.J. and Yearsley, J., 2002. The evolution of the control of food intake,. Proceedings of the Nutrition Society, 61, 465-472.CrossRefPubMedGoogle Scholar
  23. Ivan, M., Koenig, K.M., Teferedegne, B., Newbold, C.J., Entz, T., Rode, L.M. and Ibrahim, M., 2004. Effect of the dietary Enterolobium cyclocarpum foliage on the population dynamics of rumen ciliate protozoa in sheep., Small Ruminal Research. Res, 52, 81-91.CrossRefGoogle Scholar
  24. Jayanegara, A., Suderman, A., Wina, E., and Takahashi, J., 2013. Role of sapinin-rich source in relation to ruminal methane mitigation at various addition levels in vitro: an evidence from meta-analysis study. Advances in Animal Biosciences. Proceedings of the 5th Greenhouse Gases and Animal Agriculture Conference. 293 Pp.Google Scholar
  25. Jouany, J.P., Demeyer, D.I. and Grain, J., 1988. Effect of defaunating the rumen., Animal Feed Science and Technology, 21, 229-265.CrossRefGoogle Scholar
  26. Kamra, D.N., Patra, A.K., Chatterjee, P.N., Kumar, R., Agarwal, N., and Chaudhary, L. C., 2008. Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview, Animal Production Science, 48(2), 175-178.CrossRefGoogle Scholar
  27. Kang, J., Zeng, B., Tang, S., Wang, M., Han, X., Zhou, C., Yan, Q., He Z., Liu J. and Tan, Z., 2016. Effects of Momordica charantia Saponins on In vitro Ruminal Fermentation and Microbial Population,. Asian-Australasian journal of animal sciences, 29(4), 500.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koenig, K.M., Ivan, M., Teferedegne, B.T., Morgav, D.P., Rode, L.M., Ibrahim, I.M. and Newbold, C.J., 2007. Effect of dietary Enterolobium cyclocarpum on microbial protein flow and nutrient digestibility in sheep maintained fauna-free, with total mixed fauna or with Entodinium caudatum monofauna,. British Journal of Nutrition, 98, 504-516.CrossRefPubMedGoogle Scholar
  29. Lila, Z.A., Mohammed, N., Kanda, S., Kamada, T. and Itabashi, H., 2003.Effect of Sarsaponin on Ruminal Fermentation with Particular Reference to Methane Production in vitro,. Journal Dairy Science, 86, 3330-3336.CrossRefGoogle Scholar
  30. Mao, H.L., Wang, J.K., Zhou, Y.Y. and Liu, J.X., 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs., Livestock Science, 129, 56-62.CrossRefGoogle Scholar
  31. Marino, R., Atzori A.S., Andrea, M. D’, Iovane, G., Trabalza-Marinucci, M. and Rinaldi, L., 2016. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming: a status review, Small Ruminant Research, 135, 50-59CrossRefGoogle Scholar
  32. McAllister, T.A and Newbold, C.J., 2008. Redirecting rumen fermentation to reduce methanogenesis,. Australian Journal of Experimental Agriculture, 48, 7-13.CrossRefGoogle Scholar
  33. McDonald, P., Edwards, R.A., Greenhalgh, J.F. and Morgan, C.A., 2002. Animal Nutrition, 6th (ed). Prentice Hall, Essex.Google Scholar
  34. Mora, M., Domínguez, M.G. and Escobar A., 1991. Uso de la Canavalia ensiformis en la alimentación de rumiantes. En: Seminario-taller de trabajo sobre Canavalia ensiformis,. Maracay S/p.Google Scholar
  35. Morgavi, D.P., Forano, E., Martin, C. and Newbold, C.J., 2010. Microbial ecosystem and methanogenesis in ruminants,. Animal, 4, 1024-1036.CrossRefPubMedGoogle Scholar
  36. Morgavi, D. P., Martin, C., Jouany, J.P. and Ranilla, M.J., 2012. Rumen protozoa and methanogenesis: not a simple cause–effect relationship. British Journal of Nutrition, 107, 388-397.CrossRefPubMedGoogle Scholar
  37. Moscoso, C., Veles, M., Flores, A. and Angudelo, N., 1995. Effects of guanacaste tree Enterolobium cyclocarpum (Jacq. Griseb). Fruit as replacement for sorghum grain and cotton-seed meal in lambs diets,. Small Ruminal Research, 18, 121-124.CrossRefGoogle Scholar
  38. Moss, A.R., Jouany, J.P. and Newbold, J., 2000. Methane production by ruminants: Its contribution to global warming. Ann Zootechnie, 49, 231-253.CrossRefGoogle Scholar
  39. Navas, C.A., Laredo, M.A., Cuesta, A., Anzola H and , Leon, J.C., 1992. Evaluation of Enterolobium ciclocarpum as dietary alternative to eliminate protozoa from the rumen., Livestock Research for Rural Developement, 4, 55-63.Google Scholar
  40. Navas, A., Restrepo, C. and Jiménez, G., 1999. Funcionamiento ruminal de animales suplementados con frutos de Pithecellobiumsaman. (IV Seminario Internacionas sobre sistemas agropecuarios sostenibles). CIPAV, Cali.Google Scholar
  41. Newbold, C.J., El Hassan, S.M., Wang, J., Ortega, M.E., and Wallace, R.J. 1997. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria., British Journal of Nutrition, 78, 237-249.CrossRefPubMedGoogle Scholar
  42. Ogimoto, K. and Imai, S., 1981.Atlas of rumen microbiology. Japan Scientific societies pres, Tokyo. 223 p.Google Scholar
  43. Orskov, E.R. and Mc Donald I., 1979. The estimation of protein degradation in the rumen from incubation measurements weighted according to rate of passage,. Journal of Agricultural Science, 92, 499-503.CrossRefGoogle Scholar
  44. Ørskov, E.R., Flatt, W.P. and Moe, P.W., 1968. Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants, Journal Dairy Science, 51, 1429-1435.CrossRefGoogle Scholar
  45. Patra, A.K., 2016. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants, Frontiers in Veterinary Science, 3, 39. doi: 10.3389/fvets.2016.00039 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Patra, A.K. and Saxena, J., 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production,. Nutrition Research Reviews , 22, 204-219.CrossRefPubMedGoogle Scholar
  47. Patra, A.K., and Yu, Z., 2014. Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen,. Applied microbiology and biotechnology, 98(2), 897-905.CrossRefPubMedGoogle Scholar
  48. Piñeiro, V.A.T, Ayala, B.J., Chay, C.A.J. and Ku, V.J.C., 2013. Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in Pelibuey lambs. , Tropical Animal Health and Production, 45, 577-583.CrossRefGoogle Scholar
  49. Rosales, M., 1989. Uso de árboles forrajeros para el control de protozoarios ruminales,. Livestock Research for Rural Development, 1, 79-85.Google Scholar
  50. Santoso, B., Mwenya, B., Sar, C., Gamo, Y., Kobashi, T., Morikawa, R., Kimura, K., Misokoshi, H. and Takahashi, J., 2004. Effects of supplementing galacto-oligosaccharides, Yuca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep., Livestock Production Science, 91, 209-217.CrossRefGoogle Scholar
  51. SAS., 2006. Institute Inc., SAS/STAT. Software, Ver. 9.00. SAS, Cary, NC, USA.Google Scholar
  52. Schneider, B.H. and Flatt, W.P., 1975. The Evaluation of Feeds through Digestibility Experiments,. The University of Georgia Press, Athens.Google Scholar
  53. Sirohi, S.K., Goel, N. and Singh, N., 2014. Utilization of saponins, a plant secondary metabolite in enteric methane mitigation and rumen modulation, Annual Research & Review in Biology, 4, 1-19.CrossRefGoogle Scholar
  54. Vogels, G.D., Hoppe, W.F. and Strumm, C.K., 1980. Association of methanogenic bacteria with rumen ciliates,. Applied and Environmental Microbiology, 40, 608–-612.PubMedPubMedCentralGoogle Scholar
  55. Wang, Y., McAllister, T.A., Yanke, L.J., Xu, Z.J., Cheeke, P.R. and Cheng, K.J., 2000. In vitro effects of steroidal saponins from Yucca schidigera extract on rumen microbial protein synthesis and ruminal fermentation,. Journal of the Science of Food and Agriculture, 80, 2114-2122.CrossRefGoogle Scholar
  56. Williams, A.G. and Coleman, G.S., 1988. The Rumen Microbial Ecosystem. In: P.N. Hobson (Ed.)., Elsevier Applied Science. London Pp, 77–128.Google Scholar
  57. Wina, E., Muetzel, S. And Becker, K., 2005. The Impact of Saponins or Saponin-Containing Plant Materials on Ruminant Production–A Review., Journal of Agricultural and Food Chemistry, 53(21), 8093-8105.CrossRefPubMedGoogle Scholar
  58. Wina E., Muetzel, S. and Becker, K., 2006. Effects of Daily and Interval Feeding of Sapindusrarak Saponins on Protozoa, Rumen Fermentation Parameters and Digestibility in Sheep,. Asian-Australasian Journal of Animal Sciences, 19, 1580-1587.CrossRefGoogle Scholar
  59. Wolin, M.J., 1960. A theoretical rumen fermentation balance. Department of Dairy Science, University of Illinois, Urbana. 1452-1459.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • S. Albores-Moreno
    • 1
  • J. A. Alayón-Gamboa
    • 2
  • A. J. Ayala-Burgos
    • 1
  • F. J. Solorio-Sánchez
    • 1
  • C. F. Aguilar-Pérez
    • 1
  • L. Olivera-Castillo
    • 3
  • J. C. Ku-Vera
    • 1
  1. 1.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMéridaMexico
  2. 2.El Colegio de la Frontera SurLermaMexico
  3. 3.CINVESTAV-IPN, Unidad MéridaMéridaMexico

Personalised recommendations