Tropical Animal Health and Production

, Volume 49, Issue 4, pp 783–790 | Cite as

Longitudinal study of bovine rotavirus group A in newborn calves from vaccinated and unvaccinated dairy herds

  • Thaís Gomes Rocha
  • Fernanda Dornelas Florentino Silva
  • Fábio Gregori
  • Amauri Alcindo Alfieri
  • Maria da Glória Buzinaro
  • José Jurandir Fagliari
Regular Articles


Reports of rotavirus excretion in calves usually result from cross-sectional studies, and in face of the conflicting results regarding protection of calves born to vaccinated dams against diarrhea, the aim of the present study was to evaluate rotavirus excretion in dairy calves born to vaccinated or unvaccinated dams, to identify the genotypes of bovine rotavirus group A (RVA) strains isolated from these animals as well as to investigate characteristics of the disease in naturally occurring circumstances throughout the first month of life. Five hundred fifty-two fecal samples were taken from 56 calves, 28 from each farm and, in the vaccinated herd, 11/281 samples (3.91%) taken from six different calves tested positive for RVA while in the unvaccinated herd, 3/271 samples (1.11%) taken from 3 different calves tested positive. The genotyping of the VP7 genes showed 91.2% nucleotide sequence identity to G6 genotype (NCDV strain), and for the VP4 gene, strains from the vaccinated herd were 96.6% related to B223 strain, while strains from the unvaccinated herd were 88% related to P[5] genotype (UK strain). Genotypes found in this study were G6P[11] in the vaccinated herd and G6P[5] in the unvaccinated herd. All calves infected with rotavirus presented an episode of diarrhea in the first month of life, and the discrepancy between the genotypes found in the commercial vaccine (G6P[1] and G10P[11]) and the rotavirus strains circulating in both vaccinated and unvaccinated herds show the importance of keeping constant surveillance in order to avoid potential causes of vaccination failure.


Dairy calves Calf diarrhea RVA VP4 gene VP7 gene Sequencing 



This study was supported by São Paulo Research Foundation (FAPESP).

Compliance with ethical standards

Statement of animal rights

The experimental design was approved by the Animal Research Ethics Committee of the School of Veterinarian Sciences of São Paulo State University (Unesp), under protocol number 015110/10.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., and French, N., 2015. Prevalence of endemic enteropathogens of calves in New Zealand dairy farms, New Zealand Veterinary Journal, 63, 147--152CrossRefPubMedGoogle Scholar
  2. Alkan, F., Ozkul, A., Oguzoglu, T.C., Timurkan, M.O., Caliskan, E., Martella, V., and Burgu, I., 2010. Distribution of G (VP7) and P (VP4) genotypes of group A rotaviruses from Turkish calves with diarrhea, 1997-2008, Veterinary Microbiology, 141, 231--237CrossRefPubMedGoogle Scholar
  3. Attoui, H., Mertens, P.P.C., Becnel, J., Belaganahalli, S., Bergoin, M., Brussaard, C.P., Chappell, J.D., Ciarlet, M., and del Vas, M., 2011. Family reoviridae–Virus Taxonomy Ninth Report of the International Committee on Taxonomy of Viruses, (Elsevier Academic Press, Amsterdam)Google Scholar
  4. Badaracco, A., Garaicochea, L., Matthijnssens, J., Louge Uriarte, E., Odeón, A., Bilbao, G., Fernandez, F., Parra, G.I., and Parreño, V., 2013. Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds, Infection, Genetics and Evolution, 18, 18--30CrossRefPubMedGoogle Scholar
  5. Bartels, C.J.M., Holzhauer, M., Jorritsma, R., Swart, W.A.J.M., and Lam, T.J.G.M., 2010. Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves, Preventive Veterinary Medicine, 93, 162--169CrossRefPubMedGoogle Scholar
  6. Chase, C.C.L., Hurley, D.J., and Reber, A.J., 2008. Neonatal immune development in the calf and its impact on vaccine response, Veterinary Clinics of North America: Food Animal Practice, 24, 87--104PubMedGoogle Scholar
  7. Cho, Y.I., and Yoon, K.J., 2014. An overview of calf diarrhea—infectious etiology, diagnosis, and intervention, Journal of Veterinary Sciences, 15, 1--17Google Scholar
  8. Cho, Y.I., Han, J.I., Wang, C., Cooper, V., Schwartz, K., Engelken, T., and Yoon, K.Y., 2013. Case-control study of microbiological etiology associated with calf diarrhea, Veterinary Microbiology, 166, 375--385CrossRefPubMedGoogle Scholar
  9. Collins, P.J., Mulherin, E., Cashman, O., Lennon, G., Gunn, L., O’Shea, H., and Fanning, S., 2014. Detection and characterisation of bovine rotavirus in Ireland from 2006–2008, Irish Veterinary Journal, 67:13CrossRefPubMedPubMedCentralGoogle Scholar
  10. Coura, F.M., Freitas, M.D., Ribeiro, J., Leme, R.A., Souza, C., Alfieri, A.A., Facury Filho, E.J., Carvalho, A.U., Silva, M.X., Lage, A.P., and Heinemann, M.B., 2015. Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, Rotavirus, and Coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd, Tropical Animal Health and Production, 47, 3--1CrossRefPubMedGoogle Scholar
  11. Estes, M., and Greenberg, H.B., 2013. Rotaviruses. In: Knipe, D.M., Howley, P.M., Cohen, J.I., Griffin, D.E., Lamb, R.A., Martin, M.A., Roizman, B., and Racaniello, V.R. (Eds.), Fields Virology, (Lippincott Williams and Wilkins, Philadelphia)Google Scholar
  12. Fernandez, F.M., Conner, M.E., Hodgins, D.C., Parwani, A.V., Nielsen, P.R., Crawford, S.E., Estes, M.K., and Saif, L.J., 1998. Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from cows immunized with recombinant SA11 rotavirus core-like particle (CLP) or virus-like particle (VLP) vaccines, Vaccine, 16, 507--516CrossRefPubMedGoogle Scholar
  13. Freitas, P.P.S., Uyemura, S.A., Silva, D.G., Samara, S.I., and Buzinaro, M.G., 2011. Rotavirus in cattle: risk factors, prevalence and antigenic characterization from dairy calves’ samples in São Paulo State, Brazil, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63, 820--827Google Scholar
  14. Gentsch, J.R., Glass, R.I., Woods, P., Gouvea, V., Gorziglia, M., Flores, J., Das, B.K., and Bhan, M.K., 1992. Identification of group A rotavirus gene 4 types by polymerase chain reaction, Journal of Clinical Microbiology, 30, 1365--1373PubMedPubMedCentralGoogle Scholar
  15. Gouvea, V., Santos, N., and Timenetsky, M.C. 1994a. Identification of bovine and porcine rotavirus G types by PCR, Journal of Clinical Microbiology, 32, 1338--1340PubMedPubMedCentralGoogle Scholar
  16. Gouvea, V., Santos, N., and Timenetsky, M.C. 1994b. VP4 typing of bovine and porcine group A rotaviruses by PCR, Journal of Clinical Microbiology, 32, 1333--1337PubMedPubMedCentralGoogle Scholar
  17. Hall, T.A., 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95--98Google Scholar
  18. Herring, A.J., Inglis, N.F., Ojeh, C.K., Snodgrass, D.R., and Menzies, J.D., 1982. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels, Journal of Clinical Microbiology, 16, 473--77PubMedPubMedCentralGoogle Scholar
  19. Izzo, M.M., Kirkland, P.D., Mohler, V.L., Perkins, N.R., Gunn, A.A., and House, J.K., 2011. Prevalence of major enteric pathogens in Australian dairy calves with diarrhea, Australian Veterinary Journal, 89, 167--173CrossRefPubMedGoogle Scholar
  20. Kaplon, J., Fremy, C., Bernard, S., Rehby, L., Aho, S., Pothier, P., Ambert-Balay, K., 2013. Impact of rotavirus vaccine on rotavirus genotypes and caliciviruses circulatingin French cattle, Vaccine, 31, 2433--2440CrossRefPubMedGoogle Scholar
  21. Langoni, H., Linhares, A.C., Avila, F.A., Da Silva, A.V., and Elias, A.O., 2004. Contribution to the study of diarrhea etiology in neonate dairy calves in São Paulo state, Brazil, Brazilian Journal of Veterinary Research and Animal Science, 41, 313--319Google Scholar
  22. Lorenz, I., Fagan, J., and More, S.J., 2011. Calf health from birth to weaning: II. Management of diarrhea in pre-weaned calves, Irish Veterinary Journal, 64, 9Google Scholar
  23. Maes, P., Matthijnssens, J., Rahman, M., and Van R.M., 2009. RotaC: a web-based tool for the complete genome classification of group A rotaviruses, BMC Microbiology, 9, 238CrossRefPubMedPubMedCentralGoogle Scholar
  24. Matthijnssens, J., Ciarlet, M., McDonald, S.M., Attoui, H., Banyai, K., Brister, J.R., Buesa, J., Esona, M.D., Estes, M.K., Gentsch, J.R., Iturriza-Gómara, M., Johne, R., Kirkwood, C.D., Martella, V., Mertens, P.P.C., Nakagomi, O., Parreño, V., Rahman, M., Ruggeri, F.M., Saif, L.J., Santos, N., Steyer, A., Taniguchi, K., Patton, J.T., Desselberger, U., and Van Ranst, M., 2011. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG), Archives of Virology, 156, 1397--1413CrossRefPubMedPubMedCentralGoogle Scholar
  25. Matthijnssens, J., Otto, P.H., Ciarlet, M., Desselberger, U., Van Ranst, M., and Johne, R., 2012. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation, Archives of Virology, 157, 1177--1182CrossRefPubMedGoogle Scholar
  26. Medeiros, T.N.S., Lorenzetti, E., Alfieri, A.F., and Alfieri, A.A., 2014a. Severe diarrhea outbreak in beef calves (Bos indicus) caused by G6P[11], an emergent genotype of bovine rotavirus group A, Pesquisa Veterinária Brasileira, 34, 717--722CrossRefGoogle Scholar
  27. Medeiros, T.N.S., Lorenzetti, E., Alfieri, A.F., and Alfieri, A.A., 2014b. Phylogenetic analysis of a G6P[5] bovine rotavirus strain isolated in a neonatal diarrhea outbreak in a beef cattle herd vaccinates with G6P[1] and G10P[11] genotypes, Archives of Virology, 160, 447--451CrossRefGoogle Scholar
  28. Meganck, V., Hoflack, G., Piepers, S., and Opsomer, G., 2015. Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds, Preventive Veterinary Medicine, 118, 64--70CrossRefPubMedGoogle Scholar
  29. Nourmohammadzadeh, F., Davoudi, Y., Abdollahpour, G., and Nouri, A., 2012. The prevalence of rotavirus in neonatal calf diarrhea, using electron microscopic examination, Comparative Clinical Pathology, 21, 1231--1234CrossRefGoogle Scholar
  30. Oliveira-Filho, J.P., Silva, D.P.G., Pacheco, M.D., Mascarini, L.M., Ribeiro, M.G., Alfieri, A.A., Alfieri, A.F., Stipp, D.T., Barros, B.J., and Borges, A.S., 2007. Diarrhea in Nellore calves: clinical and etiological study, Pesquisa Veterinária Brasileira, 27, 419--424CrossRefGoogle Scholar
  31. Papp, H., Lászlá, B., Jakab, F., Ganesh, B., De Grazia, S., Matthijnssens, J., Ciarlet, M., Martella, V., and Bányai, K., 2013. Review of group A rotavirus strains reported in swine and cattle, Veterinary Microbiology, 165, 190--199CrossRefPubMedGoogle Scholar
  32. Parreño, V., Béjar, C., Vagnozzi, A., Barrandeguy, M., Costantini, V., Craig, M.I., Yuan, L., Hodgins, D., Saif, L.J., and Fernández, F., 2004. Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus, Veterinary Immunology and Immunopathology, 100, 7--24CrossRefPubMedGoogle Scholar
  33. Pereira, H.G., Azeredo, R.S., Leite, J.P., Candeias, J.A., Rácz, M.L., Linhares, A.C., Gabbay, Y.B., and Trabulsi, J.R., 1983. Electrophoretic study of the genome of human rotaviruses from Rio de Janeiro, São Paulo and Pará, Brazil, Journal of Hygiene, 90, 117–125Google Scholar
  34. Silva, F.D.F., Gregori, F., Gonçalves, A.C.S., Samara, S.I., and Buzinaro, M.G., 2012. Molecular characterization of group A bovine rotavirus in southeastern and central-western Brazil, 2009-2010, Pesquisa Veterinária Brasileira, 32, 237--242CrossRefGoogle Scholar
  35. Silva, F.D.F., Espinosa, L.R.L., Tonietti, P.O., Barbosa, B.R.P., and Gregori, F., 2015. Whole-genomic analysis of 12 porcine group A rotaviruses isolated from symptomatic piglets in Brazil during the years of 2012–2013, Infection, Genetics and Evolution, 32, 239--254
  36. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0, Molecular Biology and Evolution, 30, 2725--2729CrossRefPubMedPubMedCentralGoogle Scholar
  37. Trojnar, E., Sachsenröder, J., Twardziok, S., Reetz, J., Otto, P.H., and Johne, R., 2013. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses, Journal of General Virology, 94, 136--142CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Thaís Gomes Rocha
    • 1
    • 2
  • Fernanda Dornelas Florentino Silva
    • 3
  • Fábio Gregori
    • 3
  • Amauri Alcindo Alfieri
    • 4
  • Maria da Glória Buzinaro
    • 5
  • José Jurandir Fagliari
    • 1
  1. 1.Research Laboratory of the Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinarian SciencesSão Paulo State University (Unesp)JaboticabalBrazil
  2. 2.JaboticabalBrazil
  3. 3.Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary MedicineUniversity of São Paulo (USP)São PauloBrazil
  4. 4.Laboratory of Animal Virology, Department of Veterinary Preventive MedicineUniversidade Estadual de LondrinaLondrinaBrazil
  5. 5.Department of Preventive Veterinary Medicine, School of Agricultural and Veterinarian SciencesSão Paulo State University (Unesp)JaboticabalBrazil

Personalised recommendations