Advertisement

Tropical Animal Health and Production

, Volume 48, Issue 4, pp 747–753 | Cite as

Nutritional and productive performance of dairy cows fed corn silage or sugarcane silage with or without additives

  • Felipe Leite de Andrade
  • João Paulo Pacheco Rodrigues
  • Edenio Detmann
  • Sebastião de Campos Valadares Filho
  • Marcelo Messias Duarte Castro
  • Aline Souza Trece
  • Tadeu Eder Silva
  • Vivian Fischer
  • Kirsten Weiss
  • Marcos Inácio MarcondesEmail author
Regular Articles

Abstract

The objective of this study was to compare the intake, digestibility, and performance of dairy cows fed corn silage, fresh sugarcane, and sugarcane ensiled in three different forms. Twenty-five Holstein cows at 114 ± 12.6 days in milk (DIM) were used. A randomized block design was adopted, using an arrangement of repeated measures over time. The following treatments were tested: corn silage (CS); fresh sugarcane (FS); sugarcane silage without additives (SCS); sugarcane silage enriched with calcium oxide at 5 g/kg of forage (SCSc); and sugarcane silage enriched with Lactobacillus buchneri at 5 × 104 cfu/kg of forage (SCSb). The roughage to concentrate ratio was 60:40 for the CS diet and 40:60 for the sugarcane-based diets. The dry matter intake (DMI) as a function of body weight had a downward trend for the cows fed sugarcane silage, compared with those fed FS. The sugarcane silages had higher digestibilities of dry matter (DM), organic matter (OM), and neutral detergent fiber (NDFap), compared with FS. The use of L. buchneri or calcium oxide improved the diet’s digestibility. The use of FS, sugarcane silage, or sugarcane silage with additives had no effects on milk and fat-corrected milk yield, compared to corn silage. Cows fed FS presented lower milk total solids content and had a downward trend for milk fat, compared with cows fed sugarcane-silage diets. Cows fed sugarcane silages produced milk with higher casein stability in the alcohol test than cows fed fresh-sugarcane diet. Sugarcane silage, with or without additives, did not reduce the intake of dairy cows, and the use of additives improved the fiber’s digestibility.

Keywords

Calcium oxide Casein stability Digestibility Lactobacillus buchneri Microbial protein synthesis Milk composition 

Notes

Acknowledgments

We are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for funding this study.

Compliance with ethical standards

All procedures have been conducted in accordance with the guidelines set out by the Brazilian College of Animal Experimentation in the Code of Practice for the Care and Use of Animal for Experimental Purposes and were reviewed and approved by the Ethics Committee on Use of Animal for Research of the Federal University of Viçosa.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. AOAC, 1990. Official Method of Analysis, 15th ed. Association of Official Analytical Chemists - AOAC, Washington, DC., USA.Google Scholar
  2. AOCS, 2004. Official Method Am 5–04 Oil. Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction.Google Scholar
  3. Balieiro Neto, G., Siqueira, G.R., Reis, R.A., Nogueira, J.R., Roth, M. de T.P., Roth, A.P. de T.P., 2007. Óxido de cálcio como aditivo na ensilagem de cana-de-açúcar. Rev. Bras. Zootec. 36, 1231–1239. doi: 10.1590/S1516-35982007000600003
  4. Broderick, G.A., Clayton, M.K., 1997. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci. 80, 2964–71. doi: 10.3168/jds.S0022-0302(97)76262-3 CrossRefPubMedGoogle Scholar
  5. Carvalho, B.F., Ávila, C.L.S., Pinto, J.C., Neri, J., Schwan, R.F., 2014. Microbiological and chemical profile of sugar cane silage fermentation inoculated with wild strains of lactic acid bacteria. Anim. Feed Sci. Technol. 195, 1–13. doi: 10.1016/j.anifeedsci.2014.04.003 CrossRefGoogle Scholar
  6. Carvalho, B.F., Ávila, C.L.S., Miguel, M.G.C.P., Pinto, J.C., Santos, M.C., Schwan, R.F., 2015. Aerobic stability of sugar-cane silage inoculated with tropical strains of lactic acid bacteria. Grass Forage Sci. 70, 308–323. doi: 10.1111/gfs.12117 CrossRefGoogle Scholar
  7. Chen, X.B., Gomes, M.J., 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives – An overview of the technical details. Occasional Publication. Rowett Research Institute, Bucksburn, Aberdeen, UK.Google Scholar
  8. Chizzotti, M.L., Valadares Filho, S. de C., Valadares, R.F.D., Chizzotti, F.H.M., Tedeschi, L.O., 2008. Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livest. Sci. 113, 218–225. doi: 10.1016/j.livsci.2007.03.013
  9. Chizzotti, F.H.M., Pereira, O.G., Filho, S.C.V., Chizzotti, M.L., Rodrigues, R.T.S., Tedeschi, L.O., Silva, T.C., 2015. Does sugar cane ensiled with calcium oxide affect intake, digestibility, performance, and microbial efficiency in beef cattle? Anim. Feed Sci. Technol. 203, 23–32. doi: 10.1016/j.anifeedsci.2014.12.014 CrossRefGoogle Scholar
  10. Costa, M.G., De Souza Campos, J.M., De Campos Valadares Filho, S., Valadares, R.F.D., De Souza Mendonça, S., De Paula Souza, D., Da Paschoa Teixeira, M., 2005. Desempenho produtivo de vacas leiteiras alimentadas com diferentes properções de cana-de-açúcar e concentrado ou silagem de milho na dieta. Rev. Bras. Zootec. 34, 2437–2445. doi: 10.1590/S1516-35982005000700032 CrossRefGoogle Scholar
  11. Daniel, J.L.P., Amaral, R.C., Sá Neto, A., Cabezas-Garcia, E.H., Bispo, A.W., Zopollatto, M., Cardoso, T.L., Spoto, M.H.F., Santos, F.A.P., Nussio, L.G., 2013. Performance of dairy cows fed high levels of acetic acid or ethanol. J. Dairy Sci. 96, 398–406. doi: 10.3168/jds.2012-5451 CrossRefPubMedGoogle Scholar
  12. Detmann, E., Valadares Filho, S.C., 2010. On the estimation of non-fibrous carbohydrates in feeds and diets. Arq. Bras. Med. Veterinária e Zootec. 62, 980–984. doi: 10.1590/S0102-09352010000400030 CrossRefGoogle Scholar
  13. Detmann, E., de Souza, M.A., Valadares Filho, S. de C., de Queiroz, A.C., Berchielli, T.T., Saliba, E. de O.S., Cabral, L. da S., Pina, D. dos S., Ladeira, M.M., Azevedo, J.A.G., 2012. Métodos para análise de alimentos, 1st ed. Suprema, Visconde do Rio Branco, MG.Google Scholar
  14. dos Santos, W.C.C., do Nascimento, W.G., Magalhães, A.L.R., Silva, D.K.A., Silva, W.J.C.S., Santana, A.V.S., Soares, G.S.C., 2015. Nutritive value, total losses of dry matter and aerobic stability of the silage from three varieties of sugarcane treated with commercial microbial additives. Anim. Feed Sci. Technol. 204, 1–8. doi: 10.1016/j.anifeedsci.2015.03.004
  15. George, S.K., Dipu, M.T., Mehra, U.R., Singh, P., Verma, a K., Ramgaokar, J.S., 2006. Improved HPLC method for the simultaneous determination of allantoin, uric acid and creatinine in cattle urine. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 832, 134–7. doi:10.1016/j.jchromb.2005.10.051Google Scholar
  16. Gonzalez-Ronquillo, M., Balcells, J., Guada, J.A., Vicente, F., 2003. Purine derivative excretion in dairy cows: endogenous excretion and the effect of exogenous nucleic acid supply. J. Dairy Sci. 86, 1282–91. doi: 10.3168/jds.S0022-0302(03)73712-6 CrossRefPubMedGoogle Scholar
  17. Huhtanen, P., Jaakkola, S., 1993. The effects of forage preservation method and proportion of concentrate on digestion of cell wall carbohydrates and rumen digesta pool size in cattle. Grass Forage Sci. 48, 155–165. doi: 10.1111/j.1365-2494.1993.tb01848.x CrossRefGoogle Scholar
  18. Martins, C.M.M.R., Arcari, M.A., Welter, K.C., Netto, A.S., Oliveira, C.A.F., Santos, M. V, 2015. Effect of dietary cation-anion difference on performance of lactating dairy cows and stability of milk proteins. J. Dairy Sci. 98, 2650–61. doi: 10.3168/jds.2014-8926 CrossRefPubMedGoogle Scholar
  19. Mendes, C.Q., Susin, I., Nussio, L.G., Pires, A.V., Rodrigues, G.H., Urano, F.S., 2008. Efeito do Lactobacillus buchneri na fermentação, estabilidade aeróbia e no valor nutritivo de silagem de cana-de-açúcar. Rev. Bras. Zootec. 37, 2191–2198. doi: 10.1590/S1516-35982008001200017 CrossRefGoogle Scholar
  20. NRC, 2001. Nutrient Requirements of Dairy Cattle, 7th ed. National Academy Press, Washington, DC., USAGoogle Scholar
  21. Oliveira, A.S., Detmann, E., de Souza Campos, J.M., dos Santos Pina, D., de Souza, S.M., Costa, M.G., 2011. Meta-análise do impacto da fibra em detergente neutro sobre o consumo, a digestibilidade e o desempenho de vacas leiteiras em lactação. Rev. Bras. Zootec. 40, 1587–1595. doi: 10.1590/S1516-35982011000700026 Google Scholar
  22. Pedroso, A. de F., Nussio, L.G., Rodrigues, A. de A., Santos, F.A.P., Mourão, G.B., Barioni Júnior, W., 2010. Performance of dairy cows fed rations produced with sugarcane silages treated with additives or fresh sugarcane. Rev. Bras. Zootec. 39, 1889–1893. doi:10.1590/S1516-35982010000900005Google Scholar
  23. Romão, C.O., Carvalho, G.G.P., Leite, V.M., Santos, A.S., Chagas, D.M.T., Ribeiro, O.L., Oliveira, P.A., Magalhães, A.F., Pires, A.J.V., 2014. Chemical composition and dry matter digestibility of sugar cane oxide treated with calcium. Arq. Bras. Med. Veterinária e Zootec. 66, 529–538. doi: 10.1590/1678-41625930 CrossRefGoogle Scholar
  24. Russell, J.B., O’Connor, J.D., Fox, D.G., Van Soest, P.J., Sniffen, C.J., 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 70, 3551–61.PubMedGoogle Scholar
  25. Sá Neto, A., Bispo, A.W., Junges, D., Bercht, A.K., Zopollatto, M., Daniel, J.L.P., Nussio, L.G., 2014. Exchanging physically effective neutral detergent fiber does not affect chewing activity and performance of late-lactation dairy cows fed corn and sugarcane silages. J. Dairy Sci. 97, 7012–20. doi: 10.3168/jds.2013-7856 CrossRefPubMedGoogle Scholar
  26. Santiago, A.M.F., Campos, J.M. de S., Oliveira, A.S. de, Valadares Filho, S. de C., Santos, S.A., Souza, S.M. de, Santiago, I.F., 2013. Urea in sugarcane-based diets for dairy cows. Rev. Bras. Zootec. 42, 456–462. doi:10.1590/S1516-35982013000600010Google Scholar
  27. Santos, S.A., Valadares Filho, S. de C., Detmann, E., Valadares, R.F.D., Ruas, J.R. de M., Amaral, P. de M., 2011. Different forage sources for F1 Holstein × Gir dairy cows. Livest. Sci. 142, 48–58. doi: 10.1016/j.livsci.2011.06.017
  28. SAS Institute, 2013. The SAS system for Windows. Release 9.3. SAS Inst., Cary, NCGoogle Scholar
  29. Sklan, D., Ashkenazi, R., Braun, A., Devorin, A., Tabori, K., 1992. Fatty acids, calcium soaps of fatty acids, and cottonseeds fed to high yielding cows. J. Dairy Sci. 75, 2463–72. doi: 10.3168/jds.S0022-0302(92)78008-4 CrossRefPubMedGoogle Scholar
  30. Valente, T.N.P., Detmann, E., Queiroz, A.C. de, Valadares Filho, S. de C., Gomes, D.I., Figueiras, J.F., 2011. Evaluation of ruminal degradation profiles of forages using bags made from different textiles. Rev. Bras. Zootec. 40, 2565–2573. doi:10.1590/S1516-35982011001100039Google Scholar
  31. Van Soest, P.J., 1994. Nutritional Ecology of the Ruminant, 2nd ed. Cornell University Press, Ithaca.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Felipe Leite de Andrade
    • 1
  • João Paulo Pacheco Rodrigues
    • 1
  • Edenio Detmann
    • 1
  • Sebastião de Campos Valadares Filho
    • 1
  • Marcelo Messias Duarte Castro
    • 1
  • Aline Souza Trece
    • 1
  • Tadeu Eder Silva
    • 1
  • Vivian Fischer
    • 2
  • Kirsten Weiss
    • 3
  • Marcos Inácio Marcondes
    • 1
    Email author
  1. 1.Department of Animal ScienceFederal University of ViçosaViçosaBrazil
  2. 2.Department of Animal ScienceFederal University of Rio Grande do Sul StatePorto AlegreBrazil
  3. 3.Faculty of Agriculture and HorticultureHumboldt University BerlinBerlinGermany

Personalised recommendations