Advertisement

Tropical Animal Health and Production

, Volume 47, Issue 4, pp 757–764 | Cite as

Rumen function in vivo and in vitro in sheep fed Leucaena leucocephala

  • Marcos Antonio Barros-RodríguezEmail author
  • Francisco Javier Solorio-Sánchez
  • Carlos Alfredo Sandoval-CastroEmail author
  • Athol Klieve
  • Rafael Antonio Rojas-Herrera
  • Eduardo Gaspar Briceño-Poot
  • Juan Carlos Ku-Vera
Regular Articles

Abstract

The effect of Leucaena leucocephala inclusion in sheep diets upon rumen function was evaluated. Nine Pelibuey sheep, 32.6 ± 5.33 kg live weight (LW), fitted with rumen cannula were used. A complete randomized block design was employed. Two experimental periods of 60 days each, with 60-day intervals between them, were used. Experimental treatments were as follows (n = 6): T1 (control), 100 % Pennisetum purpureum grass; T2, 20 % L. leucocephala + 80 % P. purpureum; T3, 40 % L. leucocephala + 60 % P. purpureum. In situ rumen neutral detergent fiber (aNDF) and crude protein (CP) degradation, dry matter intake (DMI), volatile fatty acids (VFA) production, estimated methane (CH4) yield, rumen pH, ammonia nitrogen (N-NH3), and protozoa counts were measured. The aNDF in situ rumen degradation of P. purpureum and leucaena was higher (P < 0.05) in T2 and T3. Leucaena CP degradation was higher in T2 and T3 but for P. purpureum it was only significantly higher in T3. Leucaena aNDF and CP degradation rate (c) was 50 % higher (P < 0.05) in T2 and T3, but only higher in T3 for P. purpureum. Voluntary intake and rumen (N-NH3) was higher in T2 and T3 (P = 0.0001, P = 0.005, respectively). Molar VFA proportions were similar for all treatments (P > 0.05). Protozoa counts and in vitro gas production (48 h) were lower in T2 and T3 (P < 0.05, P < 0.0001). Estimated methane yield (mol CH4/day) was higher in sheep fed leucaena (P < 0.0001). However, CH4 yield relative to animal performance (mol CH4/g LW gain) was lower in T2 and T3 (P < 0.0001). In summary, these results indicate that including L. leucocephala in sheep diets did not modify rumen fermentation pattern (same VFA ratios) nor reduce the amount of CH4 per unit of DMI (mol CH4/g DMI). However, leucaena inclusion does increase rumen N-NH3, aNDF and CP digestibility, and voluntary intake.

Keywords

Tropical fodder Sheep Intake Methane 

Abbreviations

ADF

Acid detergent fiber

CP

Crude protein

CH4

Methane

DCI

Digestible carbohydrate intake

DOMI

Digestible organic matter intake

DM

Dry matter

DMI

Dry matter intake

GE

Gross energy

H

Hour

LW

Live weight

N-NH3

Ammonia nitrogen

aNDF

Neutral detergent fiber

OM

Organic matter

SEM

Standard error of the mean

T

Treatments

VFA

Volatile fatty acids

Notes

Acknowledgments

The authors thank the financial support from Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico (Project FORDECyT No. 117072), and the “Fundación Produce Michoacan,” Mexico. The senior author acknowledges CONACyT for a scholarship to undergo Ph.D. studies.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. AFRC, 1993. Energy and Protein requirements of ruminants. An advisory manual prepared by the AFRC Technical committee on responses to nutrients. (Agricultural Food and Research Council, CAB International: Wallingford, UK).Google Scholar
  2. Animut, G., Puchala, R., Goetsch, A.L., Patra, A.K., Sahlu, T., Varel, V.H. and Wells, J., 2008. Methane emission by goats consuming diets with different levels of condensed tannins from Lespedeza. Animal Feed Science and Technology. 144, 212-227.CrossRefGoogle Scholar
  3. AOAC, 1990. Official Methods of Analysis. 15th ed. (Association of Official Analytical Chemists: Arlington, VA).Google Scholar
  4. Barros-Rodríguez, M., Solorio-Sánchez, J., Sandoval-Castro, C., Klieve, A., Briceño-Poot, E., Ramírez-Avilés, L. and Rojas-Herrera, R., 2013. Effects of two intake levels of Leucaena leucocephala on rumen function of sheep. Tropical Grasslands-Forrajes Tropicales. 1, 55-57.Google Scholar
  5. Barros-Rodríguez, M., Solorio-Sánchez, J., Ku-Vera, J.C., Ayala-Burgos, A., Sandoval-Castro, C. and Solís-Pérez, G., 2012. Productive performance and urinary excretion of mimosine metabolites by hair sheep grazing in a silvopastoral system with high densities of Leucaena leucocephala. Tropical Animal Health and Production. 44, 1873-1878.CrossRefPubMedGoogle Scholar
  6. Beauchemin, K.A., McGinn, S.M., Martinez, T.F. and McAllister, T.A., 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. Journal of Animal Science. 85, 1990-1996.CrossRefPubMedGoogle Scholar
  7. Blummel, M., Makkar, H.P.S. and Becker, K., 1997. In vitro gas production: a technique revisited. Journal of Animal Physiology and Animal Nutrition. 77, 24-34.CrossRefGoogle Scholar
  8. Calsamiglia, S., Ferret, A., Reynolds, C.K., Kristensen, N.B. and van Vuuren, A.M., 2010. Strategies for optimizing nitrogen use by ruminants. Animal. 4, 1184-1196.CrossRefPubMedGoogle Scholar
  9. Carulla, J.E., Kreuzer, M., Machmueller, A. and Hess, H.D., 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricultural Research. 56, 961-970.CrossRefGoogle Scholar
  10. Flores, J.F., Stobbs, T.H. and Minson, D.J., 1979. The influence of the legume Leucaena leucocephala and formal-casein on the production and composition of milk from grazing cows. Journal of Agricultural Science. 92, 351-357.CrossRefGoogle Scholar
  11. Galindo, J., Marrero, Y., Ruiz, T.E., González, N., Díaz, A., Aldama, A.I., Moreira, O., Hernández, J.L., Torres, V. and Sarduy, L., 2009. Effect of a multiple mixture of herbaceous legumes and Leucaena leucocephala on the microbial population and fermentative products in the rumen of Zebu upgraded yearling steers. Cuban Journal of Agricultural Science. 43, 251-257.Google Scholar
  12. Hoover, W.H. and Stokes, S.R., 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. Journal of Dairy Science. 74, 3630-3644.CrossRefPubMedGoogle Scholar
  13. Hung, L.V., Wanapat, M. and Cherdthong, A., 2013. Effects of Leucaena leaf pellet on bacterial diversity and microbial protein synthesis in swamp buffalo fed on rice Straw. Livestock Science. 151, 188-197.CrossRefGoogle Scholar
  14. Jayanegara, A., Leiber, F. and Kreuzer, M., 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition. 96, 365-375.CrossRefPubMedGoogle Scholar
  15. Kakengi, A.M., Shem, M.N., Mtengeti, E.P. and Otsyina, R., 2001. Leucaena leucocephala leaf meal as a supplement to diet of grazing dairy cattle in semiarid western Tanzania. Agroforestry Systems. 52, 305-314.CrossRefGoogle Scholar
  16. Kurihara, M., Magner, T., Hunter, R.A. and McCrabb, G.J., 1999. Methane production and energy partition of cattle in the tropics. British Journal of Nutrition. 81, 227-234.PubMedGoogle Scholar
  17. McDonald, P., Edwards, R.A., Greenhalgh, J.F.D. and Morgan, C.A., 2002 Animal Nutrition. 6th ed. (Prentice Hall: Harlow, England, UK).Google Scholar
  18. Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development. 28, 7-55.Google Scholar
  19. Monforte-Briceño, G.E., Sandoval-Castro, C.A., Ramírez-Avilés, L. and Capetillo-Leal, C.M., 2005. Defaunating capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production. Animal Feed Science and Technology. 123, 313-327.CrossRefGoogle Scholar
  20. Muinga, R.W., Saha, H.M. and Mureithi, J.G., 2003. The effect of mucuna (mucuna pruriens) forage on the performance of lactating cows. Tropical And Subtropical Agroecosystems. 1, 87-91.Google Scholar
  21. Muinga, R.W., Topps, J.H., Rooke, J.A. and Thorpe, W., 1995. The effect of supplementation with Leucaena leucocephala and maize bran on voluntary food intake, digestibility, live weight and milk yield of Bos indicus × Bos taurus dairy cows and rumen fermentation in steers offered Pennisetum purpureum ad libitum in the semi-humid tropics. Animal Science. 60, 13-23.CrossRefGoogle Scholar
  22. Ogimoto, K. and Imai, S., 1981. Atlas of rumen microbiology. (Japan Scientific Societies Press: Tokyo).Google Scholar
  23. Ørskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from determining the digestibility of feeds in the rumen. Journal of Agricultural Science. 92, 499-503.CrossRefGoogle Scholar
  24. Ørskov, E.R., Deb Hovell, F.D. and Mould, F., 1980. The use of the nylon bag technique for the evaluation of feedstuffs. Tropical Animal Production. 5, 195-213.Google Scholar
  25. Osakwe, I.I. and Steingass, H., 2006. Ruminal fermentation and nutrient digestion in West African Dwarf (WAD) sheep fed Leucaena leucocephala supplemental diets. Agroforestry Systems. 67, 129-133.CrossRefGoogle Scholar
  26. Ryan, J.P., 1980. Determination of volatile fatty acids and some related compounds in ovine rumen fluid, urine, and blood plasma, by gas-liquid chromatography. Analytical Biochemistry. 108, 374-384.CrossRefPubMedGoogle Scholar
  27. Sandoval-Castro, C.A. and Herrera-Gómez, F., 2001. Changes in the population of rumen protozoa due to the inclusion of Canavalia ensiformis into cattle diets. Revista Biomedica. 12, 166-171 (in Spanish).Google Scholar
  28. SAS, 2000. SAS user’s guide: version 8. (SAS Institute: Cary, NC)Google Scholar
  29. Sliwinski, B.J., Kreuzer, M., Wettstein, H.R. and Machmuller, A., 2002. Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins and associated emissions of nitrogen and methane. Archives of Animal Nutrition. 56, 379-392.PubMedGoogle Scholar
  30. Tan, H.Y., Sieo, C.C., Abdullah, N., Liang, J.B., Huang, X.D. and Ho, Y.W., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Animal Feed Science and Technology. 169, 185-193.CrossRefGoogle Scholar
  31. Tavendale, M.H., Lane, G.A., Schreurs, N.M., Fraser, K. and Meagher, L.P., 2005. The effects of condensed tannins from Dorycnium rectum on skatole and indole ruminal biogenesis for grazing sheep. Australian Journal of Agricultural Research. 56, 1331-1337.CrossRefGoogle Scholar
  32. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., Mcallan, A.B.. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminants feeds. Animal Feed Science and Technology. 48, 185-197.CrossRefGoogle Scholar
  33. Tiemann, T.T., Lascano, C.E., Wettstein, H.R., Mayer, A.C., Kreuzer, M. and Hess, H.D., 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal. 2, 790-799.CrossRefPubMedGoogle Scholar
  34. Valdivia-Salgado, V., 2006. Nitrogen metabolism and rumen function in crossbred Bos taurus x Bos indicus cows in a silvopastoral system with Leucaena leucocephala. Ph.D thesis. University of Yucatan. Mexico (in Spanish).Google Scholar
  35. Van Soest, P.J., 1994. Nutritional Ecology of the Ruminants. 2nd ed. (Cornell University Press: Ithaca, NY).Google Scholar
  36. Waghorn, G.C. and Woodward, S.L., 2006. Ruminant contributions to methane and global warming—a New Zealand perspective. In: Climate Change and Managed Ecosystems. J.S. Bhatti, R. Lal, M.J. Apps, M.A. Price (eds), Taylor and Francis: Boca Raton, FL., 233-260.Google Scholar
  37. Wolin, M.J., 1960. A theoretical rumen fermentation balance. Journal of Diary Science. 43, 1452-1459CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marcos Antonio Barros-Rodríguez
    • 1
    • 4
    Email author
  • Francisco Javier Solorio-Sánchez
    • 1
  • Carlos Alfredo Sandoval-Castro
    • 1
    Email author
  • Athol Klieve
    • 2
  • Rafael Antonio Rojas-Herrera
    • 3
  • Eduardo Gaspar Briceño-Poot
    • 1
  • Juan Carlos Ku-Vera
    • 1
  1. 1.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMéridaMéxico
  2. 2.School of Agriculture and Food SciencesUniversity of QueenslandGattonAustralia
  3. 3.Facultad de Ingeniería QuímicaUniversidad Autónoma de YucatánMéridaMéxico
  4. 4.Facultad de Ciencias AgropecuariasUniversidad Técnica de Ambato, Sector el Tambo-La Universidad, vía a QueroCevallosEcuador

Personalised recommendations