Advertisement

Tropical Animal Health and Production

, Volume 47, Issue 1, pp 237–241 | Cite as

High frequency of porcine norovirus infection in finisher units of Brazilian pig-production systems

  • Patrícia F. N. Silva
  • Alice F. Alfieri
  • Aline F. Barry
  • Raquel de Arruda Leme
  • Noemi R. Gardinali
  • Wim H. M. van der Poel
  • Amauri Alcindo Alfieri
Short Communications

Abstract

Norovirus (NoV) is a member of the Caliciviridae family and is considered an emerging human enteric pathogen. NoVs are detected in farm animals such as cattle, sheep and pigs. Porcine NoV (PoNoV) is widespread worldwide, but frequency of infection is often low. This study aimed to investigate the natural PoNoV infection from adult animals of an important Brazilian pig-production region. Faecal samples (n = 112) of asymptomatic pigs aged 9 to 24 weeks old were collected from 16 grower-to-finish herds located in Paraná state, Brazilian Southern region, and evaluated for PoNoV presence. A reverse transcription-polymerase chain reaction (RT-PCR) assay was performed using specific primers that target a conserved region of the virus capsid gene (VP1). PoNoV was detected in 58 (51.8 %) of the 112 faecal samples and in 14 (87.5 %) of the 16 herds evaluated. Six of the obtained amplicons were submitted to phylogenetic genotyping analysis. The higher nucleotide (86.5–97.4 %) and amino acid (100 %) similarities of the sequences in this study were with the representative strains of the porcine NoV genogroup II genotype 11 (PoNoV GII-11). These results reveal that PoNoV infection is endemic in one of the most important pork production areas of Brazil and that the PoNoV GII-11 is prevalent in this region.

Keywords

Calicivirus Enteric virus Faeces Intestinal health Molecular epidemiology Swine 

Notes

Acknowledgments

The authors would like to thank the following Brazilian Institutes for the financial support: the National Counsel of Scientific and Technological Development (CNPq), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), Financing of Studies and Projects (FINEP) and the Araucaria Foundation (FAP/PR). Alfieri A.A., Alfieri A.F. and de Arruda Leme R. are recipients of the CNPq fellowships.

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

References

  1. ABPA Brazilian Association of Animal Protein - Pork division <http://www.abipecs.org.br/uploads/relatorios/mercado-externo/exportacoes/12meses/exp_12meses_mai12_abr14.pdf> Accessed in: May 14 2014
  2. Alfieri, A.A., Parazzi, M.E., Takiuchi, E., Médici, K.C. and Alfieri, A.F., 2006. Frequency of group A rotavirus in diarrhoeic calves in Brazilian cattle herds, 1998–2002, Tropical Animal Health and Production, 38, 521--526PubMedCrossRefGoogle Scholar
  3. Barry, A.F., Alfieri, A.F. and Alfieri, A.A., 2008. Detection and phylogenetic analysis of porcine enteric calicivirus, genetically related to the Cowden strain of sapovirus genogroup III, in Brazilian swine herds, Brazilian Journal of Veterinary Research, 28, 82--86Google Scholar
  4. Boom, R., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim-van Dillen, P.M. and van der Noordaa, J., 1990. Rapid and simple method for purification of nucleic acids, Journal of Clinical Microbiology, 28, 495--503PubMedCentralPubMedGoogle Scholar
  5. Cunha, J.B., de Mendonça, M.C., Miagostovich, M.P. and Leite, J.P., 2010a. Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de Janeiro State, Brazil, Archives of Virology, 155, 1301--1305CrossRefGoogle Scholar
  6. Cunha, J.B., de Mendonça, M.C.L., Miagostovich, M.P. and Leite, J.P.G., 2010b. First detection of porcine norovirus GII.18 in Latin America, Research in Veterinary Science, 89, 126--129PubMedCrossRefGoogle Scholar
  7. Green, K.Y., 2007. Caliciviridae: the noroviruses, In: Knipe, D.M. and Howley, P.M. (Eds.), Fields Virology 5th Edition ed. (Lippincott Williams and Wilkins, Philadelphia), p. 949--979Google Scholar
  8. ICTV International Committee on Taxonomy of Viruses <http://www.ictvonline.org/virusTaxonomy.asp> Accessed in: 03 June 2014
  9. Jiang, X., Huang, P.W., Zhong, W.M., Farkas, T., Cubitt, D.W. and Matson, D.O., 1999. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR, Journal of Virological Methods, 83, 145--154PubMedCrossRefGoogle Scholar
  10. Keum, H.-o., Moon, H.-j., Park, S.-j., Kim, H.-k., Rho, S.-m. and Park, B.-k., 2009. Porcine noroviruses and sapoviruses on Korean swine farms, Archives of Virology, 154, 1765--1774Google Scholar
  11. L’Homme, Y., Sansregret, R., Plante-Fortier, É., Lamontagne, A.-M., Lacroix, G., Ouardani, M., Deschamps, J., Simard, G. and Simard, C., 2009. Genetic diversity of porcine norovirus and sapovirus: Canada, 2005–2007, Archives of Virology, 154, 581--593PubMedCrossRefGoogle Scholar
  12. Martella, V., Campolo, M., Lorusso, E., Cavicchio, P., Camero, M., Bellacicco, A.L., Decaro, N., Elia, G., Greco, G., Corrente, M., Desario, C., Arista, S., Banyai, K., Koopmans, M. and Buonavoglia, C., 2007. Norovirus in Captive Lion Cub (Panthera leo), Emerging Infectious Diseases, 13, 1071--1073PubMedCentralPubMedCrossRefGoogle Scholar
  13. Martella, V., Lorusso, E., Decaro, N., Elia, G., Radogna, A., D’Abramo, M., Desario, C., Cavalli, A., Corrente, M., Camero, M., Germinario, C.A., Bányai, K., Di Martino, B., Marsilio, F., Carmichael, L.E. and Buonavoglia, C., 2008. Detection and molecular characterization of a canine norovirus, Emerging Infectious Diseases, 14, 1306--1308PubMedCentralPubMedCrossRefGoogle Scholar
  14. Martínez, M.A., Alcalá, A.C., Carruyo, G., Botero, L., Liprandi, F. and Ludert, J.E., 2006. Molecular detection of porcine enteric caliciviruses in Venezuelan farms, Veterinary Microbiology, 116, 77--84PubMedCrossRefGoogle Scholar
  15. Mauroy, A., Scipioni, A., Mathijs, E., Miry, C., Ziant, D., Thys, C. and Thiry, E., 2008. Noroviruses and sapoviruses in pigs in Belgium, Archives of Virology, 153, 1927--1931PubMedCrossRefGoogle Scholar
  16. Mijovski, J.Z., Poljšak-Prijatelj, M., Steyer, A., Barlič-Maganja, D. and Koren, S., 2010. Detection and molecular characterisation of noroviruses and sapoviruses in asymptomatic swine and cattle in Slovenian farms, Infection, Genetics and Evolution, 10, 413--420PubMedCrossRefGoogle Scholar
  17. Patel, M.M., Hall, A.J., Vinjé, J. and Parashar, U.D., 2009. Noroviruses: a comprehensive review, Journal of Clinical Virology, 44, 1--8PubMedCrossRefGoogle Scholar
  18. Pinto, P., Wang, Q., Chen, N., Dubovi, E.J., Daniels, J.B., Millward, L.M., Buonavoglia, C., Martella, V. and Saif, L.J., 2012. Discovery and genomic characterization of noroviruses from a gastroenteritis outbreak in domestic cats in the US, PLoS One, 7, 1--8Google Scholar
  19. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0, Molecular Biology and Evolution, 30, 2725--2729PubMedCentralPubMedCrossRefGoogle Scholar
  20. van der Poel, W.H., Vinjé, J., van Der Heide, R., Herrera, M.I., Vivo, A. and Koopmans, M.P., 2000. Norwalk-like calicivirus genes in farm animals, Emerging Infectious Diseases, 6, 36--41CrossRefGoogle Scholar
  21. Wang, Q.-H., Chang, K.-O., Han, M.G., Sreevatsan, S. and Saif, L.J., 2006a. Development of a new microwell hybridization assay and an internal control RNA for the detection of porcine noroviruses and sapoviruses by reverse transcription-PCR, Journal of Virological Methods, 132, 135--145PubMedCrossRefGoogle Scholar
  22. Wang, Q.-H., Costantini, V. and Saif, L.J., 2007. Porcine enteric caliciviruses: genetic and antigenic relatedness to human caliciviruses, diagnosis and epidemiology, Vaccine, 25, 5453--5466PubMedCentralPubMedCrossRefGoogle Scholar
  23. Wang, Q.-H., Souza, M., Funk, J.A., Zhang, W. and Saif, L.J., 2006b. Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays, Journal of Clinical Microbiology, 44, 2057--2062PubMedCentralPubMedCrossRefGoogle Scholar
  24. Wolf, S., Williamson, W., Hewitt, J., Lin, S., Rivera-Aban, M., Ball, A., Scholes, P., Savill, M. and Greening, G.E., 2009. Molecular detection of norovirus in sheep and pigs in New Zealand farms, Veterinary Microbiology, 133, 184--189PubMedCrossRefGoogle Scholar
  25. Zheng, D.-P., Ando, T., Fankhauser, R.L., Beard, R.S., Glass, R.I. and Monroe, S.S., 2006. Norovirus classification and proposed strain nomenclature, Virology, 346, 312--323PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Patrícia F. N. Silva
    • 1
  • Alice F. Alfieri
    • 1
  • Aline F. Barry
    • 1
  • Raquel de Arruda Leme
    • 1
  • Noemi R. Gardinali
    • 1
  • Wim H. M. van der Poel
    • 2
  • Amauri Alcindo Alfieri
    • 1
  1. 1.Laboratory of Animal Virology, Department of Preventive Veterinary MedicineUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Department of Virology, Central Veterinary Institute,Wageningen University and Research CentreLelystadThe Netherlands

Personalised recommendations