Advertisement

Tropical Animal Health and Production

, Volume 45, Issue 2, pp 577–583 | Cite as

Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in Pelibuey lambs

  • Angel Trinidad Piñeiro-VázquezEmail author
  • Armín Javier Ayala-Burgos
  • Alfonso Juventino Chay-Canul
  • Juan Carlos Ku-Vera
Regular Articles

Abstract

The aim of the study was to evaluate the effect of graded levels of Enterolobium cyclocarpum pods in the ration on feed intake and digestibility by Pelibuey lambs. Five dietary treatments were imposed where ground pods replaced concentrate diet at 0, 20, 30, 40 and 50 % of dry matter (DM), respectively. The concentrate portion was composed of ground sorghum, soybean meal, cane molasses and minerals. Five entire Pelibuey lambs with initial bodyweight 34 ± 2 kg were allocated in the treatments in a 5 × 5 Latin square design. Values of dry matter intake (DMI) and dry matter (DMD) and organic matter (OMD) digestibility were measured and metabolisable energy intake (MEI) estimated. Rumen degradation constants for E. cyclocarpum were also measured. There were no differences (P > 0.05) in average DMI (86.6 g/kg0.75) and OMI (81.2 g/kg0.75) among treatments. As the level of incorporation of E. cyclocarpum pods increased, voluntary DMI and OMI increased, whereas apparent DMD and OMD decreased linearly. Average digestible DM (65 g/kg0.75) and OM (61 g/kg0.75) intakes were similar (P > 0.05) among treatments. Similarly, MEI (0.976 MJ ME kg0.75/day) was not different (P > 0.05) among treatments. The potential rumen degradation (A + B) of ground pods of E. cyclocarpum was 866.4 g/kg DM. Ground pods of E. cyclocarpum can be employed for lamb feeding up to 50 % of the ration, without affecting DMI, DM apparent digestibility and MEI.

Keywords

Feed intake Tropical legume pods Rumen degradation 

Notes

Acknowledgments

We thank Consejo Nacional de Ciencia y Tecnología of Mexico for the scholarship granted to the senior author for carrying out postgraduate studies (M.Sc.) in tropical animal production at the University of Yucatan, Mexico. We thank the anonymous reviewers of this paper for valuable suggestions and comments.

References

  1. AFRC., 1993. Energy and Protein Requirements of Ruminants. CAB International, Wallingford, U.K. p.160.Google Scholar
  2. Álvarez, MG, Melgarejo, VL y Castañeda, NY., 2003. Ganancia de peso, conversión y eficiencia alimentaria en ovinos alimentados con fruto (semilla con vaina) de (Enterolobium cyclocarpum) y pollinaza. Veterinaria México, 34, 39–46.Google Scholar
  3. Andrade, JH., Esquivel, H., Ibrahim, M., 2008. Disponibilidad de forrajes en sistemas silvopastoriles con especies arbóreas nativas en el trópico seco de Costa Rica. Zootecnia Tropical, 26, 289–292.Google Scholar
  4. AOAC., 1980. Official Methods of Analysis. Association of Official Analytical Chemists. 15th. Edition, Washington D.C. USA. p 70.Google Scholar
  5. Ayala, A.J., 1997. Voluntary intake and rumen function of Zebu bulls (Bos indicus) given tropical forages. PhD thesis, University of Aberdeen. Aberdeen. UK. pp. 53.Google Scholar
  6. Calsamiglia, S., Boucher, S., Gargallo, S., Schwab, C. and Ferret, A., 2010. In situ and in vitro methods to determine intestinal digestion of protein and amino acids in ruminants. In: Energy and Protein Metabolism and Nutrition. Proceedings of the 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition. Parma, Italy, 6–10 September 2010. Wageningen Agricultural Press. The Netherlands. pp.Google Scholar
  7. Cantón, C.J.G., Moguel, O.Y., Castellanos, R.A.F., 1995. Estimación del requerimiento energético de mantenimiento del borrego Pelibuey en clima Tropical. Técnica Pecuaria en México, 32, 66–73.Google Scholar
  8. Castro, G.H.; Nahed, T.J.; Tewolde, A.; Ruiz, P.R.; López, M.J., 2006. Áreas con potencial para el establecimiento de árboles forrajeros en el centro de Chiapas. Técnica Pecuaria en México, 2, 219–230.Google Scholar
  9. Cecconello, G., Benezra, M., Obispo, N., 2003. Composición química y degradabilidad ruminal de los frutos de algunas especies forrajeras leñosas de un bosque seco tropical. Zootecnia Tropical, 21,149–165.Google Scholar
  10. Chay-Canul, A.J.; Ayala-Burgos, A.J.; Ku-Vera, J.C.; Magaña-Monforte, J.G., 2009. Efecto del tamaño de partícula sobre. Consumo, digestibilidad y balance del nitrógeno en ovinos Pelibuey alimentados con dietas basadas en frijol terciopelo (Mucuna pruriens) y grano de maíz. Tropical and Subtropical Agroecosystems, 10, 383–392.Google Scholar
  11. Chilibroste, P., Aguilar, C., y Garcia, F., 1997. Nutritional evaluation of diets. Simulation model of digestion and passage of nutrients through the rumen-reticulum. Animal Feed Science and Technology, 68, 257–259.CrossRefGoogle Scholar
  12. Cochran, W.G y Cox, G.M., 1991. Diseños Experimentales. 2ª Ed.-México. Trillas. p 661.Google Scholar
  13. Djouvinov, D. S., Todorov, N. A., 1994. Influence of dry matter intake and passage rate on microbial protein synthesis in the rumen of sheep and its estimation by cannulation and non-invasive method. Animal Feed Science and Technology, 48, 289–304.CrossRefGoogle Scholar
  14. Esquivel-Mimenza, H., Piñeiro-Vázquez, A., Bazán-Godoy, J., Ayala-Burgos, A., Espinoza-Hernandez, J. and Ku-Vera, J. 2010. Integration of Enterolobium cyclocarpum Jacq. Griseb. with hair sheep production in the dry tropics. Advances in Animal Biosciences, 1,444–445.CrossRefGoogle Scholar
  15. García, E., 1973. Modificaciones al sistema de clasificación climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana). Segunda edición. Instituto de Geografía de la Universidad Nacional Autónoma de México. México, D.F. p 246.Google Scholar
  16. García-Winder, L.R., Goñi-Cedeño, S., Olguín-Lara, P.A., Díaz-Salgado, G., Arriaga-Jordán, C.M., 2009. Huizache (Acacia farnesiana) whole pods (flesh and seeds) as an alternative feed for sheep in Mexico. Tropical Animal Health and Production, 41,1615–1621PubMedCrossRefGoogle Scholar
  17. Hess, H.D., Kreuzer, M., Díaz, T.E., Lascano, C.E., Carulla, J.E., Soliva, C.R., Machmüller, A., 2003. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Animal Feed Science and Technology, 109, 79–94.CrossRefGoogle Scholar
  18. Illius, A.W., Tolkamp, B.J., Yearsley, J., 2002. The evolution of the control of food intake. Proceedings of the Nutrition Society, 61, 465–472.PubMedCrossRefGoogle Scholar
  19. Koenig, K.M., Ivan, M., Teferedegne, B.T., Morgavi, D.P., Rode, L.M., Ibrahim, I. M. and C. J. Newbold., 2007. Effect of dietary Enterolobium cyclocarpum on microbial protein flow and nutrient digestibility in sheep maintained fauna-free, with total mixed fauna or with Entodinium caudatum monofauna. British Journal of Nutrition, 98, 504–516.PubMedCrossRefGoogle Scholar
  20. Ku-Vera, J.C., Ayala-Burgos, A.J., Solorio-Sánchez, F.J., Briceño-Poot, E.G., Ruiz-González, A., Piñeiro-Vázquez, A.T., Barros-Rodríguez, M., Soto-Aguilar, A., Espinoza-Hernandez, J.C., Albores-Moreno, S., Chay-Canul, A.J., Aguilar-Pérez, C.F., Ramírez-Avilés, L. and Bazán-Godoy, J., 2012. Tropical tree foliages and shrubs as feed additives in ruminant rations. In: Nutritional Strategies of Animal Feed Additives. Nova Science Publishers Inc., N.Y. USA. In press.Google Scholar
  21. Kyriazakis, I., 2003.What are ruminant herbivores trying to achieve through their feeding behaviour and food intake. In Mannetje, L., Ramírez – Avilés, L., Sandoval- Castro, C. and Ku-Vera, J., (eds). Matching Herbivore Nutrition to Ecosystems Biodiversity. VI International Symposium on the Nutrition of Herbivores. Mérida, México. pp. 153–173.Google Scholar
  22. McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., 2002. Animal Nutrition, sixth ed. Prentice Hall, Essex, UK.Google Scholar
  23. Mora, M., Domínguez, M.G., Escobar A., 1991. Uso de la Canavalia ensiformis en la alimentación de rumiantes. En: Seminario-taller de trabajo sobre Canavalia ensiformis. Maracay Venezuela. S/p.Google Scholar
  24. Morgavi, D.P., Forano, E., Martin, C. and Newbold, C.J., 2010. Microbial ecosystem and methanogenesis in ruminants. Animal, 4,1024–1036.PubMedCrossRefGoogle Scholar
  25. Moscoso, C., Veles, M., Flores, A. and Agudelo, N., 1995. Effects of guanacaste tree Enterolobium cyclocarpum (Jacq. Griseb). Fruit as replacement for sorghum grain and cotton-seed meal in lambs diets. Small Ruminant Research, 18,121–124.CrossRefGoogle Scholar
  26. Negrón, G.G., Parra, M.O., Ávila, P.N., Hoet, S.A., 1993.Efecto experimental de la ingestión del fruto de Enterolobium cyclocarpum (Kara-Kara) en el ganado bovino. Revista Facultad de Agronomia (LUZ), 3, 62–67.Google Scholar
  27. Ørskov, E.R., 2000. The in situ technique for the estimation of forage degradability in ruminants. In: Givens, D.I., Owen, E., Axford, R.F.E., Omed, H.M. (Eds.), Forage Evaluation in Ruminant Nutrition. CABI Publishing, Wallingford, UK, pp. 175–188.CrossRefGoogle Scholar
  28. Ørskov E.R, McDonald I., 1979. The estimation of the protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agriculture Science, (Cambridge) 92, 449–503.CrossRefGoogle Scholar
  29. Peralta, N.M., Palma, J.M. y Macedo, R., 2004. Efecto de diferentes niveles de inclusión de Enterolobium cyclocarpum en el desarrollo de ovinos en estabulación. Livestock Research for Rural Development, 16, 1–10.Google Scholar
  30. Pinto, R., Gómez, H., Martínez, B., Hernández, A., Medina, F., Ortega, L., Ramírez, L., 2004. Especies forrajeras utilizadas bajo silvo-pastoreo en el centro de Chiapas. Avances en Investigacion Agropecuaria, 8, 1–11.Google Scholar
  31. SAS., 2004. Statiscal Analysis System, Users. SAS Institute, Cary, N.C. USA.Google Scholar
  32. Schneider, B.H. and Flatt, W.P., 1975. The Evaluation of Feeds through Digestibility Experiments. The University of Georgia Press. Athens, pp. 423.Google Scholar
  33. Serratos, J., 1989. Utilización de semillas de Enterolobium cyclocarpum en la alimentación humana. Tesis de Maestría. Universidad Autónoma de Guadalajara. Guad, Jal. p. 1–65.Google Scholar
  34. Serratos, A.C.J.; Amaya J.C.; Vázquez, C.H.; Mora, P.G.; Estrada, G.J., 2008. Composición químico-nutricional y de factor antinutricionales en semillas de Enterolobium cyclocarpum. Interciencia, 33, 850–854.Google Scholar
  35. Shem, M.N., Orskov, E.R., Kimanbo, A.E., 1995. Prediction of voluntary dry-matter intake, digestible dry-matter intake and growth rate of cattle from the degradation characteristics of tropical foods. Animal Science, 60, 65–74.CrossRefGoogle Scholar
  36. Van Soest, P.J., Robertson, J.D., Lewis, B.A., 1991. Methods for dietary fibre, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Angel Trinidad Piñeiro-Vázquez
    • 1
    Email author
  • Armín Javier Ayala-Burgos
    • 1
  • Alfonso Juventino Chay-Canul
    • 2
  • Juan Carlos Ku-Vera
    • 1
  1. 1.Departamento de Nutrición Animal. Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMéridaMéxico
  2. 2.División Académica de Ciencias AgropecuariasUniversidad Juárez Autónoma de TabascoVillahermosaMéxico

Personalised recommendations