Tropical Animal Health and Production

, Volume 45, Issue 1, pp 1–8

Sexing sperm of domestic animals

  • Román Espinosa-Cervantes
  • Alejandro Córdova-Izquierdo
Review Article

Abstract

The ability to preselect or predetermine the sex of offspring prior to conception is a highly desired technological tool for assisted female breeding programs specifically for milk production, and in males, for meat production and increasing livestock numbers. The current technology is based on the well-known differences in X- and Y-sperm in the amount of DNA. The technology uses modified flow cytometric instrumentation for sorting X- and Y-bearing sperm. The method can be validated on the basis of live births, laboratory reanalysis of sorted sperm for DNA content, and embryo biopsy for sex determination. Currently, the sex of animals has been predetermined with 90 % accuracy by sexing spermatozoa. In the bovine breeding industry, flow cytometric sperm sexing has not fulfilled its original promise. Sexed sperm doses are too expensive for widespread application while the fertility of sexed sperm doses is lower than unsexed ones. Essentially all bovine sexed semen is frozen and then applied through artificial insemination (AI) or in vitro fertilization. There is still a need in the animal breeding industry to develop a technique for sperm sexing that provides sufficient spermatozoa for AI doses, does not compromise sperm fertility, and is widely applicable to a range of species. In this review, we will summarize the current state-of-the-art in sex preselection in domestic animals and some wildlife species using flow cytometric sperm-sorting of X from Y sperm based on DNA differences.

Keywords

Sexing Sperm Domestic animals Fertility Flow cytometer 

References

  1. Andersson, M., Taponen, J., Kommeri, M. and Dahlbom, M., 2006. Pregnancy rates in lactating Holstein–Friesian cows after Artificial insemination with sexed sperm, Reproduction in Domestic Animals, 41, 95–97PubMedCrossRefGoogle Scholar
  2. Badinga, L., Collier, R.J., Thatcher,W.W. and Wilcox, C.J., 1985. Effects of climatic and management factors on conception rate of dairy cattle in subtropical environment, Journal of Dairy Science, 68, 78–85.PubMedCrossRefGoogle Scholar
  3. Barlow, P. and Vosa, C. G., 1970. The Y chromosome in human spermatozoa, Nature, 226, 961-962PubMedCrossRefGoogle Scholar
  4. Bermejo-Álvarez, P., Rizos, D., Rath, D., Lonergan, P. and Gutiérrez-Adan, A., 2008. Can bovine in vitro-matured oocytes selectively process X- or Y-sorted sperm differentially, Biology of Reproduction, 79, 594–597PubMedCrossRefGoogle Scholar
  5. Bilodeau, J.F., Blanchette, S., Cormier, N. and Sirard M.A., 2002. Reactive oxygen species-mediated loss of bovine sperm motility in egg yolk Tris extender: protection by Pyruvate, metal chelators and bovine liver or oviductal fluid Catalase. Theriogenology, 57, 1105–1122PubMedCrossRefGoogle Scholar
  6. Carvalho, J.O., Sartori, R., Machado, G.M., Mourão, G.B. and Dode, M.A.N., 2010. Quality assessment of bovine cryopreserved sperm after sexing by Flow Cytometry and their use in in vitro embryo production. Theriogenology, 74, 1521–1530PubMedCrossRefGoogle Scholar
  7. Cui, K.H., 1997. Size differences between human X and Y spermatozoa and prefertilization diagnosis, Molecular Human Reproduction, 23, 11-20.Google Scholar
  8. De Graaf, S. P., Beilby, K. H., Underwood, S. L., Evans, G. and Maxwell, W.M.C., 2009. Sperm sexing in sheep and cattle: The exception and the rule, Theriogenology, 71, 89–97PubMedCrossRefGoogle Scholar
  9. DeJarnette J.M., Nebel, R.L., Marshall, C.E., Moreno, J.F., McCleary, C.R. and Lenz, R.W., 2008. Effect of sex-sorted sperm dosage on conception rates in Holstein heifers and lactating cows, Journal of Dairy Science, 91, 1778-85PubMedCrossRefGoogle Scholar
  10. DeJarnette, J.M., McCleary, C.R. Leach, M.A. Moreno, J.F. Nebel, R.L. and Marshall, C.E., 2010. Effects of 2.1 and 3.5 × 106 sex-sorted sperm dosages on conception rates of Holstein cows and heifers, Journal of Dairy Science, 93, 4079–4085PubMedCrossRefGoogle Scholar
  11. DeJarnette, J.M., Leach, M.A., Nebel, R.L., Marshall, C.E., McCleary, C.R. and Moreno, J.F., 2011. Effects of sex-sorting and sperm dosage on conception rates of Holstein heifers: Is comparable fertility of sex-sorted and conventional semen plausible?, Journal of Dairy Science, 94, 3477–3483PubMedCrossRefGoogle Scholar
  12. Ericsson, R. J., Langevin, C. N. and Nishino, M., 1973. Isolation of fractions rich in human Y sperm. Nature, 246, 421–424.PubMedCrossRefGoogle Scholar
  13. Flaherty, S.P. and Matthew, C.D., 1996. Application of modern molecular techniques to evaluate sperm sex selection methods. Molecular Human Reproduction, 2, 937-942PubMedCrossRefGoogle Scholar
  14. Frijters, A.C.J., Mullaart, E., Roelofs, R.M.G., van Hoorne, R.P., Moreno, J.F. Moreno, O. and Merton, J.S., 2009. What affects fertility of sexed bull semen more, low sperm dosage or the sorting process?. Theriogenology, 71, 64–67.PubMedCrossRefGoogle Scholar
  15. Garner, D. L., 2006. Flow Cytometric sexing of mammalian sperm, Theriogenology, 65, 943–957.PubMedCrossRefGoogle Scholar
  16. Garner, D. L. and Johnson, L. A., 1995. Viability assessment of mammalian sperm using SYBR-14 and Propidium Iodide. Biology of Reproduction, 53, 276–84.PubMedCrossRefGoogle Scholar
  17. Garner, D.L. and Seidel Jr. G.E., 2008. History of commercializing sexed semen for cattle, Theriogenology, 69, 886-895PubMedCrossRefGoogle Scholar
  18. Garner, D.L., Gledhill, B.L., Pinkel, D., Lake, S., Sthepenson, D., Van Dilla, M.A. and Johnson, L.A., 1983. Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by Flow Cytometer, Biology of Reproduction, 28, 312-321.PubMedCrossRefGoogle Scholar
  19. Gosálvez, J., Ramirez, M.A., López-Fernández, C., Crespo, F., Evans, K.M., Kjelland, M.E. and Moreno, J.F., 2011. Sex-sorted bovine spermatozoa and DNA damage: I. Static features, Theriogenology, 75: 197–205PubMedCrossRefGoogle Scholar
  20. Grant, V. J. and Chamley, L. W., 2007. Sex-sorted sperm and fertility: An alternative view, Biology of Reproduction, 76, 184–188.PubMedCrossRefGoogle Scholar
  21. Hamano, K., 2007. Sex preselection in bovine by separation of X- and Y-chromosome bearing spermatozoa, Journal of Reproduction and Development, 53, 27-38PubMedCrossRefGoogle Scholar
  22. Hayakawa, H., Hirai, T., Takimoto, A., Ideta, A. and Aoyagi, Y., 2009. Superovulation and Embryo Transfer in Holstein cattle using sexed sperm, Theriogenology, 71, 68–73PubMedCrossRefGoogle Scholar
  23. Jain, A., Yathish, H.M., Jain, T. and Sharma, A., 2011. Efficient production of sexed semen by Flow Cytometry: A Review, Agricultural Review, 32, 36–45Google Scholar
  24. Johnson, L.A., 2000. Sexing mammalian sperm for production of offspring: the state-of-the-art, Animal Reproduction Science, 60–61, 93–107PubMedCrossRefGoogle Scholar
  25. Johnson, L.A., Flook, J.P. and Look, M.V., 1987. Flow Cytometry of X and Y chromosome-bearing sperm for DNA using an improved preparation method and staining with Hoechst 33342, Gamete Research, 47, 203-212CrossRefGoogle Scholar
  26. Johnson, L.A., Flook, J.P. and Hawk, HW., 1989. Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting, Biology of Reproduction, 41, 199-203PubMedCrossRefGoogle Scholar
  27. Keeler, K.D., Mackenzie, N.M. and Dresser, D.W., 1983. Flow microfluorometric analysis of living spermatozoa stained with Hoechst 33342, Journal Reproduction and Fertility, 68, 205-212.CrossRefGoogle Scholar
  28. Klinc, P. and Rath, D., 2007. Reduction of Oxidative Stress in bovine spermatozoa during Flow Cytometric sorting, Reproduction in Domestic Animals, 42, 63–67PubMedCrossRefGoogle Scholar
  29. Kurykin, J., Jaakma, U., Jalakas, M., Aidnik, M., Waldmann, A. and Majas, L., 2007. Pregnancy percentage following deposition of sex-sorted sperm at different sites within the uterus in estrus-synchronized heifers, Theriogenology, 67, 754–759PubMedCrossRefGoogle Scholar
  30. Lu, Y., Zhang, M., Lu, S., Xu, D., Huang, W., Meng, B., Xu, H. and Lu, K., 2010. Sex-preselected buffalo (Bubalus bubalis) calves derived from artificial insemination with sexed sperm, Animal Reproduction Science, 119, 169–171PubMedCrossRefGoogle Scholar
  31. Maxwell, W.M.C., Evans, G., Hollinshead, F.K., Bathgale, R., de Graaf, S.P., Eriksson, B.M., Gillan, L., Morton, K.M., and O´Brien, J.K., 2004. Integration of sperm sexing technology into the ART toolbox, Animal Reproduction Science, 82-83, 79-95Google Scholar
  32. Mellado, M., Coronel, F., Estrada, A. and Ríos, F.G., 2010. Fertility in Holstein × Gyr cows in a subtropical environment after insemination with Gyr sex-sorted semen, Tropical Animal Health and Production, 42, 1493–1496PubMedCrossRefGoogle Scholar
  33. Morrell, J.M., and Rodriguez-Martinez., H. 2011. Practical applications of sperm selection techniques as a tool for improving reproductive efficiency. Veterinary Medicine International, vol. 2011, Article ID 894767, 9 pages, doi:10.4061/2011/894767 Google Scholar
  34. Morrell, J.M., Dalin, A.-M. and Rodriguez-Martinez, H., 2008. Prolongation of stallion sperm survival by centrifugation through coated silica colloids: a preliminary study, Animal Reproduction, 5, 121–126Google Scholar
  35. Ogbuewu, I.P., Ogundu, U.E., Opara, M.N., Okoli, I.C., Umesiobi, D.O., Herbert, U. and Iloeje, M.U, 2010, Spermatozoa manipulation techniques: A current Assisted Reproductive Technology Tool Kit in Reproductive Physiology, Journal of Medical Science, 10, 110-123CrossRefGoogle Scholar
  36. Parati, K., Bongioni, G., Aleandri, R. and Galli, A., 2006. Sex ratio determination in bovine semen: A new approach by quantitative real time PCR, Theriogenology, 66, 2202–2209PubMedCrossRefGoogle Scholar
  37. Parrilla, I., Vazquez, J. M. and Cuello, C., 2004. Hoechst 33342 stain and UV laser exposure do not induce genotoxic effects in flow-sorted boar spermatozoa, Reproduction, 128, 615–21PubMedCrossRefGoogle Scholar
  38. Peippo, J., Vartia, K., Kananen-Anttila, K., Räty, M., Korhonen, K., Hurne, T., Myllymäki, H., Sairanen, A. and Mäki-Tanila, A., 2009. Embryo production from superovulated Holstein–Friesian dairy heifers and cows after insemination with frozen-thawed sex-sorted X spermatozoa or unsorted semen, Animal Reproduction Science, 111, 80–92PubMedCrossRefGoogle Scholar
  39. Penfold, L.M., Holt, C., Holt, W.V., Welch, G.R., Cran, D.G. and Johnson L.A., 1998. Comparative motility of X and Y chromosome-bearing bovine sperm separated on the basis of DNA content by Flow Sorting, Molecular Reproduction and Development. 50, 323-327.PubMedCrossRefGoogle Scholar
  40. Prasad, S., Rangasamy, S. and Satheshkumar, S., 2010. Sex preselection in domestic animals—Current status and future prospects. Veterinary World, 3, 346–348Google Scholar
  41. Presicce, G.A., Verberckmoes, S., Senatore, E.M., Klinc, P. and Rath., D., 2005. First established pregnancies in Mediterranean Italian buffaloes (Bubalus bubalis) following deposition of sexed spermatozoa near the utero tubal junction, Reproduction in Domestic Animals, 40, 73–75PubMedCrossRefGoogle Scholar
  42. Puglisi, R., Vanni, R., Galli, A., Balduzzi, D., Parati, K., Bongioni, G., Crotti, G., Duchi, R., Galli, C., Lazzari, G., Aleandri, R., 2006. In vitro fertilisation with frozen–thawed bovine sperm sexed by Flow Cytometry and validated for accuracy by real-time PCR, Reproduction, 132, 519–526PubMedCrossRefGoogle Scholar
  43. Rath, D. and Johnson, L. A., 2008. Application and commercialization of Flow Cytometrically sex-sorted semen, Reproduction in Domestic Animals, 43, 338–346PubMedCrossRefGoogle Scholar
  44. Rens, W., Yang, F., Welch, G., Revell, S., O’Brien, P.C.M., Solanky, N., Johnson, L.A. and Ferguson Smith, M.A., 2001. An X–Y paint set and sperm FISH protocol that can be used for validation of cattle sperm separation procedures, Reproduction, 121, 541–546PubMedCrossRefGoogle Scholar
  45. Schenk, J.L. and Seidel, Jr. G.E., 2007. Pregnancy rates in cattle with cryopreserved sexed spermatozoa: effects of laser intensity, staining conditions and catalase, In: Juengel JL, Murray JF, Smith MF, editors. Reproduction in Domestic Ruminants VI. Nottingham: Nottingham University Press, 165–77.Google Scholar
  46. Seidel, Jr. G.E., 1999. Sexing mammalian sperm and embryos—state of the art, Journal of Reproduction and Fertility Suppl, 54, 475–485Google Scholar
  47. Seidel Jr. G.E., Overview of sexing sperm. 2007, Theriogenology, 68, 443–446PubMedCrossRefGoogle Scholar
  48. Seidel, Jr. G. E., 2009. Sperm sexing technology—The transition to commercial application. An introduction to the symposium “Update on sexing mammalian sperm”, Theriogenology, 71, 1–3PubMedCrossRefGoogle Scholar
  49. Seidel, Jr. G. E. and Garner, D.L., 2002. Current status of sexing mammalian spermatozoa, Reproduction, 124, 733–743PubMedCrossRefGoogle Scholar
  50. Seidel Jr. G.E. and Schenk, J.L., 2008. Pregnancy rates in cattle with cryopreserved sexed sperm: Effects of sperm numbers per inseminate and site of sperm deposition, Animal Reproduction Science, 105, 129–138PubMedCrossRefGoogle Scholar
  51. Sharpe, J. C. and Evans, K. M., 2009. Advances in Flow Cytometry for sperm sexing. Theriogenology, 71, 4–10PubMedCrossRefGoogle Scholar
  52. Sørensen, M.K., Voergaard, J., Pedersen, L.D., Berg, P., and Sørensen, A.C., 2011 Genetic gain in dairy cattle populations is increased using sexed semen in commercial herds, Journal of Animal Breeding and Genetics, 128, 267–275PubMedCrossRefGoogle Scholar
  53. Suh, T.K., Schenk, J.L., and Seidel Jr. G.E., 2005. High pressure Flow Cytometric sorting damages sperm, Theriogenology, 64, 1035–1048PubMedCrossRefGoogle Scholar
  54. Watson, P.F., 2000. The causes of reduced fertility with cryopreserved semen, Animal Reproduction Science, 60–61, 481–92PubMedCrossRefGoogle Scholar
  55. Welch, G.R. and Johnson, L.A., 1999. Sex preselection: laboratory validation of the sperm sex ratio of flow sorted X- and Y-sperm by sort reanalysis for DNA, Theriogenology, 52, 1343-1352PubMedCrossRefGoogle Scholar
  56. Welch, G.R., Waldbieser, G.C., Wall, R.J. and Johnson, L.A., 1995 Flow Cytometric sperm sorting and PCR to confirm separation of X- and Y chromosome bearing sperm, Animal Biotechnology, 6, 131–139CrossRefGoogle Scholar
  57. Williamson, S., 2004. Sex (1st) selection?, Medical Law International, 6, 185-206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Román Espinosa-Cervantes
    • 1
  • Alejandro Córdova-Izquierdo
    • 1
    • 2
  1. 1.Departamento de Producción Agrícola y AnimalUniversidad Autónoma Metropolitana Unidad XochimilcoMéxico D.F.Mexico
  2. 2.División Académica de Ciencias AgropecuariasUniversidad Juárez Autónoma de TabascoVillahermosaMexico

Personalised recommendations