Tropical Animal Health and Production

, Volume 44, Issue 4, pp 729–739 | Cite as

Methane mitigation from ruminants using tannins and saponins

  • Gunjan Goel
  • Harinder P. S. MakkarEmail author
Review Article


The ruminal methane production is a by-product of the microbial digestive process and represents a loss of 2–12% of the feed energy. Furthermore, emission of methane is considered as one of the most important global environmental issues (IPCC 2001). Therefore, decreasing methane production is desirable for reducing the greenhouse gas emission with improved efficiency of the digested energy utilization (Johnson and Johnson 1995). A previous report by Kurihara et al. (1999) indicated that methane energy loss in cattle fed on tropical forage diets was higher than in those fed on temperate forage diets, due to relative high levels of fibre and lignin and a low level of non-fibre carbohydrate in tropical forages. Also, the livestock in developing countries are predominantly maintained on a high-roughage diet with little or no concentrate resulting in increased ruminal methanogenesis. Therefore, the use of browse species containing secondary compounds as feed supplement rich in...


Methane Tannins Saponins Rumen fermentation 





Body weight


Condensed tannins


Digestible dry matter intake


Digestible energy


Dry matter


Dry matter intake


Gross energy


Hydrolysable tannins


Methane reduction on volume basis


Methane reduction on truly degraded substrate basis


Organic matter digestibility


Plant secondary metabolites


Quillaja saponaria extract


Short-chain fatty acids


Total phenols


Total tannins



The authors thank the International Atomic Energy Agency, Vienna, Austria for partly financing the work under Technical Contract 15363.


  1. Abdalla, A.L., Godoy, P.B., Longo C., Araujo Neto, J.C., Peçanha M.R.S.R., Bueno, I.C.S., Vitti, D.M.S.S. and Sallam, S.M.A., 2007. Methane emission, protozoa and methanogen counts in sheep fed coconut oil of a Brazillian tannin-rich plant (Mimosa casealpineaefolia), Microbial Ecology in Health and Disease, 19, 33.Google Scholar
  2. Abdulrazak, S.A., Fujihara, T., Ondiek, J.K. and Ørskov, E. R., 2000. Nutritive evaluation of some Acacia tree leaves from Kenya, Animal Feed Science and Technology, 85, 89–98.CrossRefGoogle Scholar
  3. Abreu, A., Carulla, J.E., Lascano, C.E., Díaz T.E., Kreuzer, M. and Hess, H.D., 2004. Effects of Sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume, Journal of Animal Science, 82, 1392–1400.PubMedGoogle Scholar
  4. Animut, G., Puchala, R., Goetsch, A.L., Patra, A.K., Sahlu, T., Varel, V.H. and Wells, J., 2008. Methane emission by goats consuming diets with different levels of condensed tannins from Lespedeza, Animal Feed Science and Technology, 144, 212–227CrossRefGoogle Scholar
  5. Beauchemin, K.A., McGinn, S.M., Martinez, T. F. and McAllister, T.A., 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle, Journal of Animal Science, 85, 1990–1996.PubMedCrossRefGoogle Scholar
  6. Beauchemin, K.A., Kreuzer, M., O’Mara, F. and McAllister T.A., 2008. Nutritional management for enteric methane abatement: a review, Australian Journal of Experimental Agriculture, 48, 21–27.CrossRefGoogle Scholar
  7. Bento, B.H.L., Acamovic, T., and Makkar, H.P.S., 2005. The influence of tannin, pectin, and polyethylene glycol on attachment of 15N–labelled rumen microorganisms to cellulose, Animal Feed Science and Technology, 122, 41–57.CrossRefGoogle Scholar
  8. Carulla, J. E, Kreuzer, M., Machmueller, A. and Hess, H.D., 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage—fed sheep, Australian Journal of Agricultural Research, 56, 961–970.CrossRefGoogle Scholar
  9. Cheeke, P.R., 1999. Actual and potential application of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition, Proceedings of the American Society of Animal Science, 1–10.Google Scholar
  10. Denman, S.E. and McSweeney, C.S., 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen, FEMS Microbiology Ecology, 58, 572–582.PubMedCrossRefGoogle Scholar
  11. Dohme, F., Machmu¨ller, A., Estermann, B.L., Pfister, P., Wasserfallen, A. and Kreuzer, M., 1999. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil, Letters in Applied Microbiology, 29, 187–192.CrossRefGoogle Scholar
  12. Flachowsky, G. and Lebzien, P., 2009. Comments on in vitro studies with methane inhibitors, Animal Feed Science and Technology, 151, 337–339.CrossRefGoogle Scholar
  13. Goel, G., Makkar, H.P.S. and Becker, K., 2008a. Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane, Animal Feed Science and Technology, 147, 72–89.CrossRefGoogle Scholar
  14. Goel, G., Makkar, H.P.S. and Becker, K., 2008b. Changes in microbial population, methanogenesis and rumen fermentation in response to saponin rich fractions of different plant materials, Journal of Applied Microbiology, 105, 770–777PubMedCrossRefGoogle Scholar
  15. Goel, G., Makkar, H.P.S. and Becker, K., 2009. Inhibition of methanogens by bromochloromethane: effects on microbial community and rumen fermentation using batch and continuous fermentations, British Journal of Nutrition, 101, 1484–1492.PubMedCrossRefGoogle Scholar
  16. Grainger, C., Clarke, T., Auldist, M.J., Beauchemin, K.A., McGinn, S.M. and Waghorn, G.C., 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows, Canadian Journal of Animal Science, 89, 241–251.CrossRefGoogle Scholar
  17. Hegarty, R.S., 1999. Mechanisms for competitively reducing ruminal methanogenesis, Australian Journal of Agricultural Research, 50, 1299–1305.CrossRefGoogle Scholar
  18. Hess, H.D., Monsalve, L.M., Lascano, C.E., Carulla, J.E., Díaz, T.E. and Kreuzer, M., 2003. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro rumen nitrogen turnover and methanogenesis, Australian Journal of Agricultural Research, 54, 703–717.CrossRefGoogle Scholar
  19. Hess, H.D., Beuret, R. A., Loetscher, M., Hindrichsen, I.K., Machmüller, A., Carulla, J.E., Lascano, C.E. and Kreuzer, M., 2004. Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage, Animal Science, 79, 177–189.Google Scholar
  20. Hess, H.D., Tiemann, T.T., Noto, F., Carulla, J.E. and Kreuzer, M., 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock, International Congress Series, 1293, 164–167.CrossRefGoogle Scholar
  21. Holtshausen, L., Chaves, A.V., Beauchemin, K.A., McGinn, S.M., McAllister, T.A., Odongo, N.E., Cheeke, P.R. and Benchaar, C., 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows, Journal of Dairy Science, 92, 2809–2821.PubMedCrossRefGoogle Scholar
  22. Hristov, N.A., McAllister, T.A., Van Herk, F.H., Cheng, K.J., Newbold, C.J. and Cheeke, P.R., 1999. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers, Journal of Animal Science, 77, 2554–2563.PubMedGoogle Scholar
  23. Hu, W. L., Yue-ming, W.U., Jian-xin, L., Yan-qiu, G. and Jun-an, Y., 2005. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid, Journal of Zhejiang University Science B, 6, 787–792PubMedGoogle Scholar
  24. IPCC, 2001. In: Houghton, J.T. et al. (Eds.), Climate Change 2001: The Scientific Background, vol. 94. Cambridge University Press, Cambridge, UK.Google Scholar
  25. Jayanegara, A., 2009. Methane reduction effect of polyphenol containing plants, simple phenols and purified tannins in in vitro rumen fermentation system. MSc thesis, University of Hohenheim, Germany.Google Scholar
  26. Jayanegara, A., Togtokhbayar, N., Makkar, H.P.S. and Becker, K., 2008. Tannins determined by various methods as predictors of methane reduction potential of plants in an in vitro rumen fermentation system, Animal Feed Science and Technology, 150, 230–237.CrossRefGoogle Scholar
  27. Jayanegara, A., Makkar, H.P.S. and Becker, K., 2009. Methane reducing properties of polyphenol containing plants simple phenols and purified tannins in in vitro gas production method, FAO-IAEA International Symposium ‘Sustainable Improvement of Animal Production and Health’, 8 to 11 June 2009, Vienna, Austria.Google Scholar
  28. Jayanegara,A., Leiber, F. and Kreuzer, M., 2011. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments, Journal of Animal physiology and Animal nutrition, doi: 10.1111/j.1439-0396.2011.01172.x
  29. Johnson, K.A., and Johnson, D.E., 1995. Methane emissions from cattle, Journal of Animal Science, 73, 2483–2492.PubMedGoogle Scholar
  30. Kurihara, M., Magner, T., Hunter, R. A., and McCrabb, G. J., 1999. Methane production and energy partition of cattle in the tropics, British Journal of Nutrition, 81, 227–334.PubMedGoogle Scholar
  31. Machmüller, A., Soliva, C. R. and Kreuzer, M., 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep, Reproduction Nutrition and Development, 43, 41–55.CrossRefGoogle Scholar
  32. Makkar H.P.S., 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin rich feeds, Small Ruminant Research, 49, 241–256CrossRefGoogle Scholar
  33. Makkar, H. P. S., and Becker, K., 1996. Effect of quillaja saponins on in vitro rumen fermentation. In: Saponins Used in Food and Agriculture; Waller, G. R., Yamasaki, Y., Eds.; Plenum Press: New York, 387–394.CrossRefGoogle Scholar
  34. Makkar, H. P. S., Bluemmel,M. and Becker, K., 1995. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen, Journal of food Science and Agriculture, 69, 481–493.CrossRefGoogle Scholar
  35. Makkar, H.P.S., Sen, S., Blümmel, M., and Becker, K., 1998. Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria and Acacia auriculoformis on rumen fermentation. Journal of Agriculture and Food Chemistry 46, 4324–4328CrossRefGoogle Scholar
  36. Makkar, H.P. S., Siddhuraju, P. and Becker, K., 2007. Plant Secondary Metabolites. Methods in Molecular Biology 393, Humana Press, Totowa, New Jersey, pp.130.Google Scholar
  37. Mao, H., Wang, J., Zhou, Y. and Liu, J., 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs, Animal Feed Science and Technology, 129, 56–62.Google Scholar
  38. McSweeney, C.S., Palmer, B., McNeil, D.M., et al., 2001. Microbial interactions with tannins: nutritional consequences for ruminants, Animal Feed Science and Technology, 91, 83–93.CrossRefGoogle Scholar
  39. Menke K.H., and Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid, Animal Research and Development, 28, 7–55Google Scholar
  40. Muetzel, S., Hoffmann, E.M., and Becker, K., 2003. Supplementation of barley straw with Sesbania pachycarpa leaves in vitro: effects on fermentation variables and rumen microbial population structure quantified by ribosomal RNA-targeted probes, British Journal of Nutrition, 89, 445–453PubMedCrossRefGoogle Scholar
  41. Nollet, L., Mbanzamihigo, L., Demeyer, D. and Verstraete, W., 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80, Animal Feed Science and Technology, 71, 49–66.CrossRefGoogle Scholar
  42. Patra, A. K., Kamra, D. N., Bhar, R., Kumar, R. and Aggarwal, N., 2011. Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep, Journal of Animal physiology and Animal nutrition, 95, 187–191.PubMedCrossRefGoogle Scholar
  43. Pen, B., Takaura, K., and Yamaguchi, S., 2007. Effects of Yucca shidigera and Quillaja saponaria with or without β 1–4 galacto-oligosaccharides on ruminal fermentation, methane production and nitrogen utilization in sheep, Animal Feed Science and Technology,138,75–88CrossRefGoogle Scholar
  44. Puchala, R., Min, B.R., Goetsch, A.L., and Sahlu, T., 2005. The effect of a condensed tannin–containing forage on methane emission in goats, Journal of Animal Science, 83, 182–186.PubMedGoogle Scholar
  45. Santoso, B., Mwenya, B., Sar, C., Gamo, Y., Kobayashi, T., Morikawa, R., Kimura, K.., Mizukoshi, H., Takahashi, J., 2004. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep, Livestock Production Science 91, 209–217CrossRefGoogle Scholar
  46. Sliwinski, B.J., Kreuzer, M., Wettstein, H.R., and Machmuller, A., 2002. Rumen fermentation and nitrogen balance of lambs fed diets containing plantextracts rich in tannins and saponins and associated emissions of nitrogen and methane, Archieves of Animal Nutrition, 56, 379–392.Google Scholar
  47. Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N.,. Attwood, G. T. and Sivakumaran, S., 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis, Animal Feed Science and Technology, 123–124, 403–419CrossRefGoogle Scholar
  48. Teferedegne, B., McIntosh, F., Osuji, P.O., Odenyo, A., Wallace, R. J., and Newbold, C. J., 1999. Influence of foliage from different accessions of the subtropical leguminous tree, Sesbania sesban on rumen protozoa in Ethiopian and Scottish sheep, Animal Feed Science and Technology, 78:11–20CrossRefGoogle Scholar
  49. Tiemann T. T., Lascano C. E., Wettstein H-R., Mayer, A. C.; Kreuzer, M.; Hess, H. D., 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2, 790–799CrossRefGoogle Scholar
  50. Vinogradov E., Egbosimba E.E., Perry M.B., Lam, J. S., and Forsberg, C. W. , 2001. Structural analysis of the carbohydrate components of the outer membrane of the lipopolysaccharide-lacking cellulolytic ruminal bacterium Fibrobacter succinogenes S85, European Journal of Biochemistry, 268, 3566–3576.PubMedCrossRefGoogle Scholar
  51. Waghorn G.C., and Woodward S.L., 2006. Ruminant contributions to methane and global warming—a New Zealand perspective, In: J.S. Bhatti, R. Lal, M.J. Apps and M.A. Price, Editors, Climate Change and Managed Ecosystems, Taylor and Francis, Boca Raton, pp. 233–260Google Scholar
  52. Wang Y.X., McAllister T.A., Newbold C.J., Cheeke, P.R., Cheng, K.J., 1998. Effect of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC), Animal Feed Science and Technology 74,143–153CrossRefGoogle Scholar
  53. Wang, Y., McAllister T.A., Yanke L.J., Cheeke, P.R., 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes, Journal of Applied Microbiology, 88, 887–896.PubMedCrossRefGoogle Scholar
  54. Wang, C. J., Wang S.P., and Zhouc H., 2009. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep, Animal Feed Science and Technology, 148, 157–166CrossRefGoogle Scholar
  55. Wina E., Muetzel S., Hoffman E., and Becker, K., 2004. Effects of saponin containing methanol extract of Sapindus rarak on ruminal flora and fermentation characteristics in vivo, Reproduction Nutrition and Development, 44, S41Google Scholar
  56. Woodward, S.L., Waghorn, G.C., Ulyatt, M.J., and Lassey, K.R., 2001. Early indication that feeding lotus will reduce methane emission from ruminants. Proceedings of New Zealand Society of Animal Production, 61, 23–26.Google Scholar
  57. Woodward, S. L., Waghorn, G.C., and Laboyrie, P.G., 2004. Condensed tannins in birdsfoot trefoil (Lotus corniculatus) reduce methane emissions from dairy cows. Proceedings of New Zealand Society of Animal Production, 64,160–164Google Scholar
  58. Yuan, Z.P., Zhang C.M., and Zhou L., 2007. Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep, Journal of Animal Feed Science, 16, 560–565Google Scholar
  59. Zhou, Y.Y., Mao, H. L., Jiang, F., Wang, J. K., Liu, J.X. and McSweeney, C. S., 2011. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep, Animal Feed Science and Technology, 166, 93–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for Animal Production in the Tropics and Subtropics (480b)University of HohenheimStuttgartGermany
  2. 2.Department of BiotechnologyMaharishi Markandeshwar UniversityMullanaIndia
  3. 3.Food and Agriculture OrganisationAGASRomeItaly

Personalised recommendations