Tropical Animal Health and Production

, Volume 44, Issue 4, pp 697–706 | Cite as

Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance—a review

Review Article


Reducing methane emission from ruminant animals has implications not only for global environmental protection but also for efficient animal production. Tea saponins (TS) extracted from seeds, leaves or roots of tea plant are pentacyclic triterpenes. They have a lasting antiprotozoal effect, but little effect on the methanogen population in sheep. There was no significant correlation between the protozoa counts and methanogens. The TS decreased methanogen activity. It seems that TS influenced the activity of the methanogens indirectly via the depressed ciliate protozoal population. The TS addition decreased fungal population in the medium containing rumen liquor in in vitro fermentation, but no such effect was observed in the rumen liquor of sheep fed TS. Tea saponins had a minor effect on the pattern of rumen fermentation and hence on nutrient digestion. When added at 3 g/day in diets, TS could improve daily weight gain and feed efficiency in goats. No positive associative effect existed between TS and disodium fumarate or soybean oil on methane suppression. Inclusion of TS in diets may be an effective way for improving feed efficiency in ruminants.


Tea saponins Rumen microbiota Rumen fermentation Growth performance Hydrogen acceptor 



Disodium fumarate


Denaturing gradient gel electrophoresis


Dry matter


Intergovernmental Panel on Climate Change


Microbial protein


Methyl-coenzyme M reductase


Soybean oil


Tea saponins


Tea saponins plus disodium fumarate


Volatile fatty acids


  1. Afrose, S., Hossain, M.S., Tsujii, H., 2010. Effect of dietary karaya saponin on serum and egg yolk cholesterol in laying hens, British Poultry Scinece, 51, 797–804CrossRefGoogle Scholar
  2. Bauchop, T., 1979. Rumen anaerobic fungi of cattle and sheep, Applied and Environmental Microbiology, 38, 148–158PubMedGoogle Scholar
  3. Cheeke, P.R., 2000. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition, Journal of Animal Science, 77, 1–10Google Scholar
  4. Diaz, A., Avendano, M., Escobar, A., 1993. Evaluation of Sapindus saponaria as a defaunating agent and its effects on different rumen digestion parameters, Livestock Research for Rural Development, 5(2), 1–6Google Scholar
  5. Finlay, B.J., Esteban, G., Clarke, K.J., Williams, A.G., Embley, T.M., Hirt, R.P., 1994. Some rumen ciliates have endosymbiotic methanogens, FEMS Microbiology Letters, 117, 157–162PubMedCrossRefGoogle Scholar
  6. France, J., Dijkstra, J., 2005. Volatile fatty acid production. In: J. Dijkstra, J.M. Forbes, J. France (eds), Quantitative Aspects of Ruminant Digestion and Metabolism, (CABI Publishing, UK), 157–176CrossRefGoogle Scholar
  7. Goel, G., Makkar, H.P.S., Becker, K., 2008. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials, Journal of Applied Microbiology, 105, 770–777PubMedCrossRefGoogle Scholar
  8. Guo, Y.Q., Liu, J.X., Lu, Y., Zhu, W.Y., Denman, S.E., McSweeney, C.S., 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen microorganisms, Letters in Applied Microbiology, 47, 421–426PubMedCrossRefGoogle Scholar
  9. Guo, X.F., Ruan, L.H., Tan, T., 2009. Effect of theasaponins on the foaming capacity of soy protein, Journal of Henan University of Technology (Natural Science Edition), 30(3), 12–14Google Scholar
  10. Hassan, S.M., Byrd, J.A., Cartwright, A.L., Bailey, C.A., 2010. Hemolytic and antimicrobial activities differ among saponin-rich extracts from Guar, Quillaja, Yucca, and Soybean, Applied Biochemistry and Biotechnology, 162, 1008–1017PubMedCrossRefGoogle Scholar
  11. Hayashi, K., Sagesaka, Y.M., Suzuki, T., Suzuki, Y., 2000. Inactivation of human type A and B influenza viruses by tea-sead saponins, Bioscience, Biotechnology, and Biochemistry, 64, 184–186PubMedCrossRefGoogle Scholar
  12. Headon, D.R., Buggle, K., Nelson, A., Killeen, G., 1991. Glycofractions of the Yucca plant and their role in ammonia control. In: Proceeding of the Alltech’s Seventh Annual Symposium of Biotechnology Feed Industry, (Nicholasville, Kentucky, USA), 95–108Google Scholar
  13. Hegarty, R.S., 1999. Reducing rumen methane emissions through elimination of rumen protozoa, Australian Journal of Agricultural Research, 50, 1321–1328CrossRefGoogle Scholar
  14. Hess, H.D., Kreuzer, M., Diaz, T.E., Lascano, C.E., Carulla, J.E., Soliva, C.R., Machmüller, A., 2003. Saponin rich tropical fruits affect fermentation and methanogensesis in faunated and defaunated rumen fluid, Animal Feed Science and Technology, 109, 79–94CrossRefGoogle Scholar
  15. Hu, W.L., Liu, J.X., Ye, J.A., Wu, Y.M., Guo, Y.Q., 2005a. Effect of tea saponin on rumen fermentation in vitro, Animal Feed Science and Technology, 120, 333–339CrossRefGoogle Scholar
  16. Hu, W.L., Wu, Y.M., Liu, J.X., Guo, Y.Q., Ye, J.A., 2005b. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid, Journal of Zhejiang University-Science B, 6, 787–792PubMedCrossRefGoogle Scholar
  17. Hu, W.L., Liu, J.X., Wu, Y.M., Guo, Y.Q., Ye, J.A., 2006. Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat. Archives of Animal Nutrition, 60, 89–97PubMedCrossRefGoogle Scholar
  18. Hussain, I., Cheeke, P.R., 1995. Effect of Yucca scidigera extract on rumen and blood profiles of steers fed concentrate- or roughage-based diets, Animal Feed Science and Technology, 51, 231–242CrossRefGoogle Scholar
  19. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007. The Scientific Basis, (Cambridge University Press, Cambridge, UK)Google Scholar
  20. Ivan, M., Koening, K.M., Teferedegne, B., Newbold, C.J., Entz, T., Rode, L.M., Ibrahim, M., 2004. Effect of the dietrary Enterolobium cyclocarpum foliage on the population dynamics of rumen ciliate protozoa in sheep, Small Ruminant Research, 52, 81–91CrossRefGoogle Scholar
  21. Johnson, K.A. and Johnson, D.E., 1995. Methane emissions from cattle, Jounal of Animal Science, 73, 2483–2492Google Scholar
  22. Jouany, J.P., 1996. Effect of rumen protozoa on nitrogen utilization by ruminants, Journal of Nutrition, 126, 1335S–1346SPubMedGoogle Scholar
  23. Kitagawa, I., Hori, K., Motozawa, T., Murakami, T., Yoshikawa, M., 1998. Structures of new acylated oleanene-type triterpene oligoglycosides, theasaponins E1 and E2, from the seeds of tea plant, Camellia sinensis (L.) O. Kuntze, Chemical and Pharmaceutical Bulletin, 46, 1901–1906CrossRefGoogle Scholar
  24. Klita, P.T., Mathison, G.W., Fenton, T.W., Hardin, R.T., 1996. Effects of alfalfa root saponins on digestive function in sheep, Journal of Animal Science, 74, 1144–1156PubMedGoogle Scholar
  25. Lila, Z.A., Mohammed, N., Kanda, S., Kamada, T., Itabashi, H., 2003. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro, Journal of Dairy Science, 86, 3330–3336PubMedCrossRefGoogle Scholar
  26. Lopez, S., Valdes, C., Newbold, C.J., Wallace, R.J., 1999. Influence of sodium fumarate addition on rumen fermentation in vitro, British Journal of Nutrition, 81, 59–64PubMedGoogle Scholar
  27. Lovett, D.K., Stack, L., Lovell, S., Callan, J., Flynn, B., Hawkins, M., Mara, F.P.O., 2006. Effect of feeding Yucca schidigera extract on performance of lactating dairy cows and ruminal ermentation parameters in steers, Livestock Science, 102, 23–32CrossRefGoogle Scholar
  28. Machmüller, A., Soliva, C.R., Kreuzer, M., 2003. Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion, British Journal of Nutriton, 90, 529–540CrossRefGoogle Scholar
  29. Mao, H.L., Wang, J.K., Zhou, Y.Y., Liu J.X., 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs, Livestock Science, doi:10.1016/j.livsci.2009.12.011
  30. Matsuura, M., 2001. Saponins in garlic as modifiers of the risk of cardiovascular disease, Journal of Nutrition, 131, 1000S–1005SPubMedGoogle Scholar
  31. Morikawa, T., Matsuda, H., Li, N., Nakamura, S., Li, X., Yoshikawa, M., 2006. Bioactive saponins and glycosides. XXVI. New Triterpene saponins, theasaponins E10, E11, E12, E13, and G2, from the seeds of tea plant (Camellia sinensis), Heterocycles, 68, 1139–1148CrossRefGoogle Scholar
  32. Moss, A.R., Jouany, J.P. and Newbold, J., 2000. Methane production by ruminants: its contribution to global warming, Annales de Zootechnie, 49, 231–253CrossRefGoogle Scholar
  33. Mounfort, D.O., Asher, R.A., 1989. Production of xylanase from anaerobic fungus, Neocallimastix frontalis, Applied and Environmental Microbiology, 55, 1016–1022Google Scholar
  34. Müller, M., 1993. The hydrogenosome, Journal of General Microbiology, 139, 2879–2889PubMedGoogle Scholar
  35. Murakami, T., Nakamura, J., Matsuda, H., Yoshikawa, M., 1999. Bioactive saponins and glycosides. XV. Saponin constituents with gastroprotective effect from the seeds of tea plant, Camellia sinensis L. var. assamica PIERRE, cultivated in Sri Lanka: structures of assamsaponins A, B, C, D, and E, Chemical and Pharmaceutical Bulletin, 47, 1759–1764CrossRefGoogle Scholar
  36. Murakami, T., Nakamura, J., Kageura, T., Matsuda, H., Yoshikawa, M., 2000. Bioactive saponins and glycosides. XVII. Inhibitory effect on gastric emptying and accelerating effect on gastrointestinal transit of tea saponins: structures of assamsaponins F, G, H, I, and J from the seeds and leaves of the tea plant, Chemical and Pharmaceutical Bulletin, 48, 1720–1725CrossRefGoogle Scholar
  37. Nasri, Saïda, Salem, H.Ben, Vasta, V., Abidi, S., Makkar, H.P.S., Priolo, A., 2011. Effect of increasing levels of Quillaja saponaria on digestion, growth and meat quality of Barbarine lamb, Animal Feed Science and Technology, 164, 71–78CrossRefGoogle Scholar
  38. Newbold, C.J., Lopez, S., Nelson, N., Ouda, J.O., Wallace, R.J., Moss, A.R., 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro, British Journal of Nutrition, 94, 27–35PubMedCrossRefGoogle Scholar
  39. Nollet, L., Mbanzamihigo, L., Demeyer, D., Verstraete, W., 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80, Animal Feed Science and Technology, 71, 49–66CrossRefGoogle Scholar
  40. Oakenfull, D., Sidhu, G., 1990. Could saponins be a useful treatment for hypercholesterolemia? European Journal of Clinical Nutrition, 44, 79–88PubMedGoogle Scholar
  41. Owens, F.N., Bergen, W.G., 1983. Nitrogen metabolism of ruminant animals: Historical perspective, current understanding and future Implications, Journal of Animal Science, 57, 498–518PubMedGoogle Scholar
  42. Owolabi, O.A., James, D.B., Ibrahim, A.B., Folorunsho, O.F., Bwalla, I., Akanta, F., 2010. Changes in lipid profile of aqueous and ethanolic extract of Blighia sapida in rats, Asian Journal of Medical Sciences, 2, 177–180Google Scholar
  43. Rode, L.M., 2000. Maintaining a healthy Rumen – An overview, Advances in Dairy Technology, 12, 101–108Google Scholar
  44. Sagesaka, Y.M., Uemura, T., Suzuki, Y., Sugiura, T., Yoshida, M., Yamaguchi, K, Kyuki, K., 1996. Antimicrobial and anti-inflammatory actions of tea-leaf saponin, Yakugaku Zasshi, 116(3), 238–243PubMedGoogle Scholar
  45. Santoso, B., Kilmaskossu, A., Sambodoc, P., 2007. Effects of saponin from Biophytum petersianum Klotzsch on ruminal fermentation, microbial protein synthesis and nitrogen utilization in goats, Animal Feed Science and Technology, 137, 58–68CrossRefGoogle Scholar
  46. Singer, M.D., Robinson, H.P., Salem, A.Z.M., DePeters, E.J., 2008. Impacts of rumen fluid modified by feeding Yucca schidigera to lactating dairy cows on in vitro gas production of 11 common dairy feedstuffs, as well as animal performance, Animal Feed Science and Technology, 146, 242–258CrossRefGoogle Scholar
  47. Soliva, C.R., Hess, H.D., Meile, L., 2003. Suppression of ruminal methanogenesis by dietary means: apprent inconsistency between methane release and counts of microbes involved in methanogenesis, Tropical and Subtropical Agroecosystems, 3, 209–213Google Scholar
  48. Teferedegne, B., McIntosh, F., Osuji, P.O., Odenyo, A., Wallace, R.J., Newbold, C.J., 1999. Influence of foliage from different accessions of the subtropical leguminous tree, Sesbania sesban on rumen protozoa in Ethiopian and Scottish sheep, Animal Feed Science and Technology, 78, 11–20CrossRefGoogle Scholar
  49. Thalib, A., Widiawati, Y., Hamid, H., Suherman, D., Sabrani, M., 1996. The effects if saponin from Sapindus rarak fruit on rumen microbes and performance of sheep, Jurnal Ilmu Ternak dan Veteriner (Indonesia), 2, 17–20Google Scholar
  50. Tokura, M., Chagan, I., Ushida, K., Kojima, Y., 1999. Phylogenetic study of methanogens associated with rumen ciliates, Current Microbiology, 39, 123–128PubMedCrossRefGoogle Scholar
  51. Ungerfeld, E.M., Rust, S.R., Burnett, R., 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis, Reproduction Nutrition Development, 43, 189–202CrossRefGoogle Scholar
  52. Van Soest, P.J., 1994. Nutritional Ecology of the Ruminant, 2nd ed., (Cornell University Press, United States)Google Scholar
  53. Vincken, J.P., Heng, L., de Groot, A., Gruppen, H., 2007. Saponins, classification and occurrence in the plant kingdom, Phytochemistry, 68(3), 275–297PubMedCrossRefGoogle Scholar
  54. Vinogradov, E., Egbosimba, E.E., Perry, M.B., Lam, J.S., Forsberg, C.W., 2001. Structural analysis of the carbohydrate components of the outer membrane of the lipopolysaccharide-lacking cellulolytic ruminal bacterium Fibrobacter succinogenes S85, European Journal of Biochemistry, 268, 3566–3576PubMedCrossRefGoogle Scholar
  55. Vogels, G.D., Hoppe, W.F., Stumm, C.K., 1980. Association of methanogenic bacteria with rumen ciliates, Applied and Environmental Microbiology, 40, 608–612PubMedGoogle Scholar
  56. Wallace, R.J., McEwan, N.R., McIntosh, F.M., Teferedegne, B., Newbold, C.J., 2002. Natural products as manipulators of rumen fermentation, Asian-Australasian Journal of Animal Sciences, 15(10), 1458–1468Google Scholar
  57. Wang, Y., McAllister, T.A., Newbold, C.J., Rode, L.M., Cheeke, P.R., Cheng, K.-J., 1998. Effect of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC), Animal Feed Science and Technology, 74, 143–153CrossRefGoogle Scholar
  58. Wang, Y., McAllister, T.A., Yanke, L.J., Cheeke, P.R., 2000a. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes, Journal of Applied Microbiology, 88, 887–896PubMedCrossRefGoogle Scholar
  59. Wang, Y.X., McAllister, T.A., Yanke, L.J., Xu, Z.J., Cheeke, P.R. and Cheng, K.-J., 2000b. In vitro effects of steroidal saponins from Yucca Schidiigera extract on rumen microbial protein synthesis and ruminal fermentation, Journal of the Science of Food and Agriculture, 80, 2114–2122CrossRefGoogle Scholar
  60. Wang, C.J., Wang, S.P., Zhou, H., 2009. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep, Animal Feed Science and Technology, 148, 157–166CrossRefGoogle Scholar
  61. Williams, A.G., Coleman, G.S., Brock, T.D., 1991. The Rumen Protozoa, (Springer-Verlag New York, LLC.)Google Scholar
  62. Wina, E., Muetzel, S., Becker, K., 2005a. The impact of saponins or saponin-containing plant materials on ruminant production-a review, Journal of Agricultural and Food Chemistry, 53, 8093–8105PubMedCrossRefGoogle Scholar
  63. Wina, E., Muetzel, S., Hoffman, E., Makkar, H.P.S., Becker, K., 2005b. Saponins containing methanol extract of Sapindus rarak affect munity structure in vitro, Animal Feed Science and Technology, 121, 159–174CrossRefGoogle Scholar
  64. Wina, E., Muetzel, S., Becker, K., 2006. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short and long-term feeding of Sapindus rarak saponins, Journal of Applied Microbiology, 100, 114–122PubMedCrossRefGoogle Scholar
  65. Wu, W.T., Chen, J.W., Hsieh, H.J., 2007. Method of emulsifying phytosterol by natural saponin, emulsion prepared thereby and water dispersible phytosterol powder product, United States Patent Application Publication, Appl. No.: 11/179, 472.Google Scholar
  66. Yoshikawa, M., Morikawa, T., Li, N., Nagatomo, A., Li, X., Matsuda, H., 2005a. Bioactive Saponins and Glycosides. XXIII. Triterpene Saponins with Gastroprotective Effect from the Seeds of Camellia sinensis-Theasaponins E3, E4, E5, E6, and E7, Chemical and Pharmaceutical Bulletin, 53, 1559–1564CrossRefGoogle Scholar
  67. Yoshikawa, M., Morikawa, T., Yamamoto, K., Kato, Y., Nagatomo, A.,Matsuda, H., 2005b. Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis), Journal of Natural Products, 68, 1360–1365PubMedCrossRefGoogle Scholar
  68. Yoshikawa, M., Morikawa, T., Nakamura, S., Li, N., Li, X., Matsuda, H., 2007. Bioactive Saponins and glycosides. XXV. acylated oleanane-type triterpene saponins from the seeds of tea plant (Camellia sinensis), Chemical and Pharmaceutical Bulletin, 55, 57–63CrossRefGoogle Scholar
  69. Yuan, Z.P., Zhang, C.M., Zhou, L., Zou, C.X., Guo, Y.Q., Li, W.T., Liu, J.X. and Wu, Y.M. 2007. Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep, Journal of Animal and Feed Sciences, 16(Suppl. 2), 560–565Google Scholar
  70. Yuan, X.Z., Meng, Y.T., Zeng, G.M., Fang, Y.Y., Shi, J.G., 2008. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation, Colloids and Surfaces: A: Physicochemical and Engineering Aspects, 317, 256–261CrossRefGoogle Scholar
  71. Zhang, C.M., Guo, Y.Q., Yuan, Z.P., Wu, Y.M., Wang, J.K., Liu, J.X., Zhu, W.Y., 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogensis and microbial flora in vitro, Animal Feed Science and Technology, 146, 259–269CrossRefGoogle Scholar
  72. Zhou, Y.Y., Mao, H.L., Jiang, F., Wang, J.K., Liu, J.X., McSweeney, C.S., 2011. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep, Animal Feed Science and Technology, 166–167, 93–100CrossRefGoogle Scholar
  73. Zinder, S.H., 1993. Physiological ecology of methanogens. In: J.G.,Ferry (eds), Methanogenesis: Ecology, Physiology, Biochemistry & Genetics. (Chapman & Hall. Inc, New York), 128–206.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations