Advertisement

Tropical Animal Health and Production

, Volume 44, Issue 2, pp 329–336 | Cite as

On-farm evaluation of the effect of coffee pulp supplementation on milk yield and dry matter intake of dairy cows grazing tropical grasses in central Mexico

  • Paulina Pedraza-Beltrán
  • Julieta G. Estrada-Flores
  • Angel R. Martínez-Campos
  • Isael Estrada-López
  • Adolfo A. Rayas-Amor
  • Gilberto Yong-Angel
  • Marisol Figueroa-Medina
  • Francisca Avilés Nova
  • Octavio A. Castelán-OrtegaEmail author
Original Research

Abstract

Tropical grasses are the primary nutrient resource for cattle production in the tropics, and they provide low-cost nutrients to cattle. However, its production is constrained by seasonal changes and quality; hence, appropriate usage of relatively inexpensive agricultural by-products is important to profitable livestock production. The objective of the study was to evaluate the effect of supplementing coffee pulp to dairy cows grazing tropical grasses on milk yield and forage intake. Four multiparous crossed Holstein–Brown Swiss–Zebu cows of similar weight and milk yield were used. The effect of 10%, 15% and 20% inclusion of coffee pulp in dairy concentrates on milk yield and forage intake was analysed using a 4 × 4 Latin square design. Results showed that there were no significant effects (P > 0.05) in grass dry matter intake, milk yield, milk composition body weight and body condition score due to the inclusion of coffee pulp in the dairy concentrates. It is concluded that coffee pulp can be included at levels of 20% in the concentrate without compromising significantly (P > 0.05) milk yield, milk composition and grass dry matter intake. It also was concluded that cost of concentrate is reduced in 20% by the inclusion of coffee pulp.

Keywords

Bahia grass Coffee pulp Dairy cattle 

Notes

Acknowledgements

This research was founded by the Universidad Autónoma del Estado de Mexico grant 2344/2006, ICAMEX grant 2389/2006E and CONACYT-Mexico.

References

  1. Agricultural, Food and Research Council (AFRC) 1993. Energy and protein requirements of ruminants, (CAB International, Wallingford).Google Scholar
  2. Ambriz-Vilchis V., Estrada-Flores J.G., Hernández-Ortega M., Rojas-Garduño M.A., Sánchez-Vera E., Espinoza-Ortega A., Castelán-Ortega O.A., 2009a. Development of feeding strategies for cows in small scale dairy farming systems in the highlands of central Mexico by a simulation model and on-farm experiments. Phase 1: Development of a novel framework. In: W. Cao, J. White and E. Wang (eds), Crop Modeling and Decision Support, (Springer, Berlin), 241–248.CrossRefGoogle Scholar
  3. Ambriz-Vilchis V., Estrada-Flores J.G., Hernández-Ortega M., Rojas-Garduño M.A., Sánchez-Vera E., Espinoza-Ortega A., Castelán-Ortega O.A., 2009b. Development of feeding strategies for cows in small scale dairy farming systems in the highlands of central Mexico by a simulation model and on-farm experiments. Phase II: On-farm experiments and validation of a simulation model. In: W. Cao, J. White and E. Wang (eds), Crop Modeling and Decision Support, (Springer, Berlin), 241–248.CrossRefGoogle Scholar
  4. Association of Official Agricultural Chemist (AOAC), 1990. Official Method of Analysis, 15th ed, (Association of Official Agricultural Chemist, Arlington).Google Scholar
  5. ASERCA, 2010. Mercado internacional del café, http://www.infoaserca.gob.mx/analisis/cafe.pdf [last visited in 17-09-2010]
  6. Avilés, N.F., Espinoza O.A., Castelán, O.O.A., Arriaga, J,C. M. 2008. Sheep performance under intensive continuous grazing of native grasslands of Paspalum notatum and Axonopus compressus in the subtropical region of the highlands of central Mexico, Tropical Animal Health and Production, 40, 509–515.CrossRefGoogle Scholar
  7. Barcelos, A.F., Andrade, I.F., Tiesenhausen, I.M.E.V., Ferreira, J.J., Sette, R.S., Amaral, R., Paiva, P.S.A., 1996. Aproveitamento da casca de café na alimentação de vacas em lactação. Proceedings of the 33 Reunião Anual Da Sociedade Brasileira De Zootecnia, Fortaleza, 1996, (Anais. Fortaleza: SBZ, 1996), 128–129.Google Scholar
  8. Bautista, E.O., Pernía, J., D. Barrueta, D., Useche, M., 2005. Pulpa ecológica de café ensilada en la alimentación de alevines del híbrido de cachamay (Colossoma macropomum x Piaractus brachypomus), Revista Científica, FCV-LUZ, 15(1), 33–40.Google Scholar
  9. Bressani, R., 1987. Antiphysiological factors in coffee pulp. In: J.E. Brahan, R. Bressani (eds), Coffee pulp: composition, technology, and utilization. (Guatemala City: Institute of Nutrition of Central America and Panama), 83–88Google Scholar
  10. Cabezas, M.T., Flores, A., Egana, J.I., 1987. Use of coffee pulp in ruminant feeding. In: J.E. Brahan, R. Bressani (eds), Coffee pulp: composition, technology, and utilization, (Guatemala City: Institute of Nutrition of Central America and Panama), 25–38.Google Scholar
  11. Costa, T. A.A., Neves, P.M., Tavares, M.R., Chaves, M.L., (2005). Performance of Holstein–Zebu cows under partial replacement of corn by coffee hulls, Scientia Agricola, 62:2, 95–101.CrossRefGoogle Scholar
  12. Demeke, S., 1991. Coffee pulp alone and in combination with urea and others feeds for sheep in Ethiopia, Small Ruminant Research, 5, 223–231.CrossRefGoogle Scholar
  13. Demeke, S., 2007. Comparative nutritive value of Atella and industrial brewers grains in chicken starter ration in Ethiopia, Livestock Research for Rural Development, 19: 1, http://www.cipav.org.co/lrrd/lrrd19/1/deme19008.htm.
  14. de Oliveira, S.A., 2, de Souza C.J.M., de Campos, V.F.A., de Assis, A.J., Araújo, T. R.M., Navajas, R.L., dos Santos, P.D., de Oliveira, G.S. (2007). Substituição do milho pela casca de café ou de soja em dietas para vacas leiteiras: comportamento ingestivo, concentração de nitrogênio uréico no plasma e no leite, balanço de compostos nitrogenados e produção de proteína microbiana, Revista Brasileira de Zootecnia, 36:1, 205–215.CrossRefGoogle Scholar
  15. de Souza, L.A., Garcia, R., Filho, S.C.V., Rocha, F.C., Campos, J.M.S., Cabral, L.S., Gobbi, K.F., 2005. Effects of feeding coffee hulls on intake, digestibility and milk yield and composition of lactating dairy cows, Revista Brasileira do Zootecnia, 34:6, 2496–2504.CrossRefGoogle Scholar
  16. de Souza, L.A., Rasmo, G., da Silva C.L, Albuquerque, P.M.L., Valadares, D.R.F., 2010. Coffee hull in the diet of dairy heifers: nitrogen balance and microbial protein synthesis, Revista Brasileira do Zootecnia, 39:5, 1141–1145.CrossRefGoogle Scholar
  17. Dove, H., Mayes, R.W., 2000. Using n-alkanes and other plant wax components to estimate intake, digestibility and diet composition of grazing/browsing sheep and goats, Journal Small Ruminant Research, 59, 123–139.CrossRefGoogle Scholar
  18. FAOSTAT 2011. http://faostat.fao.org
  19. Farah, A., Donangelo, C.M., 2006. Phenolic compounds in coffee, Brazilian Journal of Plant Physiology, 18:1, 23–36.CrossRefGoogle Scholar
  20. Hodgson, J., Birdcham, J.S., Grant, S.A., King, J., 1981. The influence of cutting and grazing management on herbage growth and utilization. In: C.E. Wright (eds), Plant Physiology and Herbage Production. The British Grassland Society, Occasional Symposium 13. (The British Grassland Society, London), 51–62.Google Scholar
  21. Makkar, H. P. S., 2003. Review effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds, Small Ruminant Research, 49, 241–256.CrossRefGoogle Scholar
  22. Mayne, C.S., Wright, L.A., Fisher G.E.J., 2000. Grassland management under grazing and animal response. In: A. Hopkins (ed), Grass: Its Production and Utilization, Third Edition, (British Grassland Society, London), 247–291.Google Scholar
  23. Mazzafera, P., 2002. Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding, Scientia Agricola, 59:4, 815–821.CrossRefGoogle Scholar
  24. Méndez, C.M.D., Tzintzun, R.R., Val-Arreola, D., 2000. Production evaluation, environmental effects and problems in small scale dairy farms, Livestock Research for Rural Development, 12:1, http://www.lrrd.org/lrrd12/1/manu121.htm
  25. Minitab (2003) v.14 user’s guide II: data analysis and quality tools. Minitab, USA.Google Scholar
  26. Mlay, P.S., Pereka, A.E., Balthazary, S., Phiri, E.J.C., Madsen, J., Hvelpund, T. and Weisbjerg, M.R., 2007. In situ degradation of poor quality hay in the rumen of mature heifers as influenced by sugar, starch and nitrogen supplements and an ionic feed additive, Tanzania Veterinary Journal, 24, 23–37.Google Scholar
  27. Negesse, T., Makkar, H.P.S., Becker, K., 2009. Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and in vitro gas method. Animal Feed Science and Technology, 154, 204–217.CrossRefGoogle Scholar
  28. National Research Council (NRC), 1987. Predicting feed intake of food-producing animals. National Academy, Washington, D.C.Google Scholar
  29. Noriega, S.A., Silva, A.R., García, S.M., 2008. Utilización de la pulpa de café en la alimentación animal, Zootecnia Tropical, 26:4, 419–419.Google Scholar
  30. Nurfeta, A., 2010. Feed intake, digestibility, nitrogen utilization, and body weight change of sheep consuming wheat straw supplemented with local agricultural and agro-industrial by-products, Tropical Animal Health and Production, 42, 815–824.PubMedCrossRefGoogle Scholar
  31. Parsons, A.J. and Chapman, D.F., 2000. The principles of pasture growth and utilization. In: A. Hopkins (ed), Grass: its production and utilization, Blackwell Science, Oxford, 31–89.Google Scholar
  32. Pulido, R.G. and Leaver, J.D., 2001. Quantifying the influence of sward height, concentrate level and initial milk yield on the milk production and grazing behaviour of continuously stocked dairy cows, Grass and Forage Science, 56, 57–67.CrossRefGoogle Scholar
  33. Rodenburg, J., 2000. Body condition scoring for dairy cattle, http://www.omafra.gov.on.ca/english/livestock/dairy/facts/00-109.htm, [last visited 16-09-2010]
  34. Souza, M.A., Detmann, E., Paulino, M.F., Sampaio, C.B., Lazzarini, I., Valadares, F.S.C., 2010. Intake, digestibility and rumen dynamics of neutral detergent fibre in cattle fed low-quality tropical forage and supplemented with nitrogen and/or starch, Tropical Animal Health and Production, 42, 1299–1310.PubMedCrossRefGoogle Scholar
  35. Ulloa, R.J.B., Verrethb, J.A.J., van Weerd, J.H. and Huismanb, E.A., 2002. Effect of different chemical treatments on nutritional and antinutritional properties of coffee pulp, Animal Feed Science and Technology, 99, 195–204.CrossRefGoogle Scholar
  36. Ulloa, R.J.B., Verreth, J.A.S., 2002. Growth, feed utilization and nutrient digestibility in tilapia fingerlings (Oreochromis aureus Steindachner) fed diets containing bacteria-treated coffee pulp, Aquaculture Research 33, 189–195.CrossRefGoogle Scholar
  37. Ulloa, R.J.B., Verrethb, J.A.J., van Weerd, J.H. and Huismanb, E.A., 2004. Tropical agricultural residues and their potential uses in fish feeds: the Costa Rican situation, Waste Management, 24, 87–97.PubMedCrossRefGoogle Scholar
  38. Wallace, R. J., 2004. Antimicrobial properties of plant secondary metabolites, Proceedings of the Nutrition Society, 63, 621–629.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paulina Pedraza-Beltrán
    • 1
  • Julieta G. Estrada-Flores
    • 2
  • Angel R. Martínez-Campos
    • 2
  • Isael Estrada-López
    • 1
  • Adolfo A. Rayas-Amor
    • 1
  • Gilberto Yong-Angel
    • 1
  • Marisol Figueroa-Medina
    • 1
  • Francisca Avilés Nova
    • 3
  • Octavio A. Castelán-Ortega
    • 1
    Email author
  1. 1.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma del estado de MéxicoTolucaMexico
  2. 2.Instituto de Ciencias Agropecuarias y RuralesUniversidad Autónoma del Estado de MéxicoTolucaMexico
  3. 3.Centro Universitario TemascaltepecUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations