Advertisement

Tropical Animal Health and Production

, Volume 43, Issue 2, pp 481–489 | Cite as

Acaricidal efficacy against cattle ticks and acute oral toxicity of Lippia javanica (Burm F.) Spreng

  • James Madzimure
  • Emmanuel T. Nyahangare
  • Humphrey Hamudikuwanda
  • Thokozani Hove
  • Philip C. Stevenson
  • Steve R. Belmain
  • Brighton M. Mvumi
Original Research

Abstract

In search for low-cost, safe and environmentally benign plant-based alternatives to commercial pesticides, the efficacy of Lippia javanica aqueous leaf extracts in controlling ticks on cattle, acute oral toxicity in mice and phytochemistry were evaluated. L. javanica aqueous leaf extracts at 10% and 20% w/v were effective at controlling cattle ticks but not as good as an amitraz-based acaricide Tickbuster®. However, they can provide an effective tick control option where synthetic products are unavailable or unaffordable, particularly in remote parts of southern Africa. Peripheral blood samples collected showed no haemoparasites in treated cattle implying that animals did not suffer from clinical tick-borne diseases. The leaf aqueous extracts of L. javanica were tested for toxicity in BALB/c mice. While anecdotal evidence suggests L. javanica has low mammalian toxicity, within 48 h all mice fed with the L. javanica leaf aqueous extract at 12.5–37.5% v/v were lethargic, and overall mortality was 37.5% (n = 24). Thus, despite their apparent safety, water extracts of L. javanica leaves may have deleterious health implications on humans and animals if consumed at very high doses. Many compounds have been identified from L. javanica including an array of phenolic glycosides, flavonoids and essential oils but none of these are known to have acute toxic properties.

Keywords

Acaricidal efficacy Cattle ticks Leaf aqueous extract Lippia javanica Mice Oral toxicity Phytochemistry 

Notes

Acknowledgements

The authors acknowledge funding from the European Union, 9th European Development Fund through the Implementation and Coordination of Agricultural Research and Training (ICART) Programme administered by the Secretariat and African Caribbean and Pacific Science and Technology Programme (SADC). We also acknowledge the role of Southern Alliance for Indigenous Resources (SAFIRE); World Agro Forestry Centre (ICRAF); Department for Agricultural Research Services, Malawi; Mzuzu University, Malawi in shaping this study. The authors are grateful to Henderson Research Institute, Zimbabwe for supplying the cattle, facilities and technical support. Dr. M. Munyangani of Mazowe Veterinary College, Zimbabwe provided technical expertise in screening cattle blood samples for parasites. We are also grateful to Dr G.C. Kite at the Royal Botanic Gardens, Kew, UK for LC-MS analysis.

References

  1. Ameyaw, Y., 2009. A growth regulator for the propagation of Lippia multiflora Moldenke, a herbal for the management of mild hypertension in Ghana, Journal of Medicinal Plants Research, 3, 681-685Google Scholar
  2. Anonymous, 1993. Animal Health Cattle-Cleansing Regulations, 1993. Supplement to the Zimbabwean Government Gazette, 20 August, 1993, (Government Printer, Harare)Google Scholar
  3. Aslam, S.N., Stevenson, P.C., Kokubun, T. and Hall, D.R., 2009. Antibacterial and antifungal activity of cicerfuran and related 2-arylbenzofurans and stilbenes, Microbiological Research, 164, 191-195CrossRefPubMedGoogle Scholar
  4. Belmain, S.R. and Stevenson, P.C., 2001. Ethnobotanicals in Ghana: Reviving and modernising age-old farmer practice, Pesticide Outlook, 12 (6), 233-238CrossRefGoogle Scholar
  5. Belmain, S.R., Neal, G.E., Ray, D.E. and Golob, P., 2001. Insecticidal and vertebrate toxicity associated with ethnobotanicals used as post-harvest protectants in Ghana, Food Chemical Toxicology, 39, 287-291CrossRefGoogle Scholar
  6. Benavides, E., Hernández, G., Romero, N., Castro, A. and Rodrígues, B., 2001. Preliminary evaluation of Neem (Azadirachta indica) extracts as an alternative for cattle tick, Boophilus microplus control, Revista Colombiana de Entomologia, 27 (1-2), 1-8Google Scholar
  7. Bizimenyera, E.S., Swan, G.E., Chikoto, H. and Eloff, J.N., 2005. Rationale for using Peltopharum africanum (Fabaceae) extracts in veterinary medicine, Journal of South African Veterinary Association, 76, 54-58Google Scholar
  8. Chhabra, M.B. and Saxena, M.J., 1998. The use of phytotherapeutic agents for the control of acariasis in animals: a review, Journal of Veterinary Parasitology, 12 (1), 3-8Google Scholar
  9. Chowdhury, J.U., Yusuf, M., Begum, J., Sultana, S.A. and Hussain, M.M., 2003. Composition and fungitoxic properties of the essential oil of Lippia javanica leaves, Indian Perfumer, 47 (4), 385-388Google Scholar
  10. da Costa, Andrea S., Arrigoni-Blank, MD, Blank, A. F., de Mendonca, AB., Amancio, VF.1. and Ledo, A S., 2007. In vitro establishment of Lippia sidoides cham, Horticultura Brasileira, 25, 68-72Google Scholar
  11. Eloff, J.N., 1998. Which extractant should be used for screening and isolation of antimicrobial components?, Journal of Ethnopharmacology, 60, 1-8CrossRefPubMedGoogle Scholar
  12. Futyoyma, D.J. and Agrawal, A.A., 2009. Macroevolution and the biological diversity of plants and herbivores, Proceedings of the National Academy of Sciences, 106, 18054-18061CrossRefGoogle Scholar
  13. Gunjal, K., Goodbody, S., Delbaere, J., Kenefick, E. and Rammala, V., 2009. FAO/WFP crop and food security assessment mission to Zimbabwe. Special Report, 22 June 2009, (Food and Agriculture Organisation of the United Nations, Rome; World Food Programme, Rome)Google Scholar
  14. Isman, M.B., 2008. Perspective Botanical Insecticides: for richer for poorer, Pest Management Science, 64, 8–11CrossRefPubMedGoogle Scholar
  15. Jamzad, Z., Grayer, R.J., Kite, G.C., Simmonds. M.S.J., Ingrouille, M. and Jalili, A., 2003. Leaf surface flavonoids in Iranian species of Nepeta (Lamiaceae) and some related genera, Biochemical Systematics and Ecology, 31, 587-600CrossRefGoogle Scholar
  16. Kamanula, J., Sileshi, G.W., Belmain, S.R., Sola, P., Mvumi, B.M., Nyirenda, G.K.C., Nyirenda, S.P. and Stevenson, P.C. (2010) Farmers’ Insect pest management practices and pesticidal plant use for protection of stored maize and beans in Southern Africa. International Journal of Pest ManagementGoogle Scholar
  17. Kelly, W.R., 1979. Veterinary clinical diagnosis. 2nd Ed., (Bailliere Tindall, London)Google Scholar
  18. Kreier, J. P., 1994. Theileriasis. In: Parasitic Protozoa. 2nd edn, (Academic Press, Inc. Boston)Google Scholar
  19. Levine, N.D., 1985. Veterinary Protozoalogy, (Iowa State University Press. Ames., Iowa)Google Scholar
  20. Lewis, J.J., 1965. An introduction to pharmacology, (The Williams and Wilkins Company, Baltimore)Google Scholar
  21. Lukwa, N., Molgaard, P., Furu, P. and Bogh, C., 2009. Lippia javanica (Burm F.) Spreng: its general constituents and bioactivity on mosquitoes, Tropical Biomedicine, 26 (1), 85-91Google Scholar
  22. Mahmmod, Y.S., El-Balkemy, F.A., Yuan, Z.G., El-Mekkawy, M.F., Monazie, A.M. and Zhu, X.Q., 2010. Field evaluation of PCR assays for the diagnostic of tropical theileriosis in cattle and water buffaloes in Egypt, Journal of Animal and Veterinary Advances, 9 (4), 696-699CrossRefGoogle Scholar
  23. Manenzhe, N.J., Potgieter, N., van Ree, T., 2004. Composition and antimicrobial activities of volatile components of Lippia javanica, Phytochemistry, 65 (16), 2333-2336CrossRefPubMedGoogle Scholar
  24. Martin, M., McCorkle, M.C. and Mathias, E., 2001. Ethnoveterinary Medicine: An annotated bibliography of community animal healthcare, (ITDG Publishing, London)Google Scholar
  25. Moreira, F.J.C., Santos, C.D.G. and Innecco, R., 2009. Hatching and mortality of second-stage juveniles of Meloidogyne incognita race 2 in essential plant oils, Revista Ciencia Agronomica, 40 (3), 441-448Google Scholar
  26. Moyo, B. and Masika, P.J., 2009. Tick control methods used by resource-limited farmers and the effect of ticks on cattle in rural areas of the Eastern Cape Province, South Africa, Tropical Animal Health and Production, 41, 517-523CrossRefGoogle Scholar
  27. Mujovo, S.F., Hussein, A.A., Meyer, J.J.M., Fourie, B., Muthivhi, T. and Lall, N., 2008. Bioactive compounds from Lippia javanica and Hoslundia opposite, Natural Product Research, 22 (12), 1047-1054CrossRefPubMedGoogle Scholar
  28. Noamesi, B.K., Abebago, G.I. and Bamgbose, S.O., 1985a. Muscle relaxant properties of aqueous extract of Lippia multiflora, Planta Medica, 51, 253–255CrossRefGoogle Scholar
  29. Noamesi, B.K., Abebago, G.I. and Bamgbose, S.O., 1985b. The vascular actions of aqueous extract of Lippia multiflora, Planta Medica, 51, 256–258CrossRefGoogle Scholar
  30. Nyirenda, S.P., Sileshi, G.W., Belmain, S.R., Kamanula, J., Mvumi, B.M., Sola, P., Nyirenda, G.K.C., and Stevenson, P.C. (2010) Farmers’ ethno-ecological knowledge of vegetable pests and pesticidal plant use in northern Malawi and eastern Zambia, African Journal Agricultural ResearchGoogle Scholar
  31. Nzira, L., Per, M., Peter, F. and Claus, B., 2009. Lippia javanica (Burm F) Spreng: its general constituents and bioactivity on mosquitoes, Tropical Biomedicine, 26 (1), 85-91PubMedGoogle Scholar
  32. Olivier, D.K., Shikanga, E.A., Combrinck, S., Krause, R.W.M., Regnier, T. and Dlamini, T.P., 2010. Phenylethanoid glycosides from Lippia javanica, South African Journal of Botany, 76 (1), 58-63CrossRefGoogle Scholar
  33. Pascual, M.E., Slowing, E., Carretero, E., Sanchez, Mata, D. and Villar, A., 2001. Lippia: traditional uses, chemistry and pharmacology: A review, Ethnopharmacology, 76, 201-214CrossRefPubMedGoogle Scholar
  34. Pegram, R.G. Tatchell, R.J. de Castro, J.J., Chizyuka, H.G.B., Creek, M.J., McCosker, P.J., Moran, M.C. and Nigarura, G. (1993) Tick control: new concepts. World Animal Review, (FAO), No. 74-75, 2-11.Google Scholar
  35. O’neill, R.T., 2006. On sample sizes to estimate the protective efficacy of a vaccine, Statistics in Medicine, 7 (12), 1279-1288.CrossRefGoogle Scholar
  36. Quirantes-Pine, R., Funes, L., Micol, V., Segura-Carretero, A. and Fernandez-Gutierrez, A., 2009. High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract, Journal of Chromatography A, 1216, 5391-5397CrossRefPubMedGoogle Scholar
  37. Samie, A., Obi, C.L., Lall, N. and Meyer, J.J.M., 2009a. In-vitro cytotoxicity and antimicrobial activities, against clinical isolates of Campylobacter species and Entamoeba histolytica, of local medicinal plants from the Venda region, in South Africa, Annals of Tropical Medicine and Parasitology, 103 (2), 159-170CrossRefPubMedGoogle Scholar
  38. Samie, A., Housein, A., Lall, N. and Meyer, J.J.M., 2009b. Crude extracts of, and purified compounds from, Pterocarpus angolensis, and the essential oil of Lippia javanica: their in-vitro cytotoxicities and activities against selected bacteria and Entamoeba histolytica, Annals of Tropical Medicine and Parasitology, 103 (5), 427-439CrossRefPubMedGoogle Scholar
  39. Samie, A., Tambani, T., Harshfield, E., Green, E., Ramalivhana, J.N. and Bessong, P.O., 2010. Antifungal activities of selected Venda medicinal plants against Candida albicans, Candida krusei and Cryptococcus neoformans isolated from South African AIDS patients, African Journal of Biotechnology, 9 (20), 2965-2976Google Scholar
  40. Sastry, G. A., 1983. Veterinary Clinical Pathology, 3 rd Ed., (CBS Publishers, New Delhi)Google Scholar
  41. Shikanga, E., Regnier, T., Combrinck, S. and Botha, B., 2009. Polar Lippia extracts as alternatives for the postharvest control of Guazatine (R)-resistant strains of Penicillium digitatum in citrus, Fruits, 64, 75-82CrossRefGoogle Scholar
  42. Statistical Analysis System (SAS), 2006. Statistical Analysis System User’s Guide, (SAS Institute Inc, Raleigh, North Carolina)Google Scholar
  43. Stevenson, P. C., Dyarathna, T. K., Belmain, S. R. and Veitch, N. C., 2009a. Bisdesmosidic saponins from Securidaca longepedunculata (Polygalaceae) with deterrent and toxic properties to Coleapteran storage pests, Journal of Agricultural and Food Chemistry, 57, 8860–8867CrossRefPubMedGoogle Scholar
  44. Stevenson, P.C. Muyinza, H., Hall, D.R., Porter, E.A. Farman, D.I., Talwana, H. Mwanga R.O.M., 2009b. Chemical basis for resistance in sweetpotato Ipomoea batatas to the sweetpotato weevil Cylas puncticollis, Pure and Applied Chemistry, 81, 141-151CrossRefGoogle Scholar
  45. Stevenson, P. C., Nyirenda, S., Sileshi, G., Kamanula, J., Mvumi, B., Sola, P., Simmonds, M., and Belmain, S. (2010). Southern African Pesticidal Plants (SAPP) Project. Caesalpinioid woodlands of Southern Africa: optimising the use of pesticidal plants. Final Technical Report, (Natural Resources Institute, University of Greenwich, Chatham)Google Scholar
  46. Van Wyk, B.E., 2008. A broad review of commercially important southern African medicinal plants, Journal of Ethnopharmacology, 119 (3), 342-355CrossRefPubMedGoogle Scholar
  47. Viljoen, A.M., Subramoney, S., van Vuuren, S.F., Baser, K.H.C. and Demerci, B., 2005. The composition, geographical variation and antimicrobial activity of Lippia javanica (Verbenaeceae) leaf oils, Ethnopharmacology, 96 (1-2), 271-277CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • James Madzimure
    • 1
  • Emmanuel T. Nyahangare
    • 1
  • Humphrey Hamudikuwanda
    • 1
  • Thokozani Hove
    • 2
  • Philip C. Stevenson
    • 3
    • 4
  • Steve R. Belmain
    • 3
  • Brighton M. Mvumi
    • 5
  1. 1.Department of Animal Science, Faculty of AgricultureUniversity of ZimbabweHarareZimbabwe
  2. 2.Department of Paraclinical Veterinary Studies, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
  3. 3.Natural Resources InstituteUniversity of GreenwichChathamUK
  4. 4.Royal Botanic GardensSurreyUK
  5. 5.Department of Soil Science and Agricultural Engineering, Faculty of AgricultureUniversity of ZimbabweHarareZimbabwe

Personalised recommendations