Tropical Animal Health and Production

, Volume 43, Issue 1, pp 121–126 | Cite as

Skin and coat traits in sheep in Brazil and their relation with heat tolerance

  • Concepta McManus
  • Helder Louvandini
  • Rosilene Gugel
  • Luiz Cláudio Bastos Sasaki
  • Eliandra Bianchini
  • Francisco Ernesto Moreno Bernal
  • Samuel Rezende Paiva
  • Tiago Prado Paim
Original Research


The objective of this study was to evaluate and compare physical parameters in groups of sheep with different phenotypic characteristics in the Centre-west region of Brazil. Five groups of sheep, with nine animals per group, were selected, three groups of Santa Inês animals with different coat colours (white, brown and black), one group with crossbred animals (Santa Inês × Bergamasca) and one group with animals of the Bergamasca breed. The following traits were evaluated: coat thickness, number and length of hair, pigmentation level in the coat and the skin as well as the percentage area of sweats glands in the skin tissue, carried out by histological analysis. The number of hairs and the area of sweats glands were not significantly different between the evaluated groups. The Bergamasca breed showed low pigmentation of the skin and long hairs. The levels of pigmentation of the hair and of the skin were highly correlated. Between the Santa Inês groups, the group with white hair showed the better parameters for heat adaptation, while the brown hair group showed the lower heat adaptation when compared with another hair breed groups.


Bergamasca Pigmentation Sweat glands Hair Santa-Inês Wool 


  1. Acharya, R. M., Gupta, R. M., Sehgal, J. P. E Singh, M. 1995. Coat characteristics of goats in relation to heat tolerance in the hot tropics. Small Ruminant Research, 18, 245–248CrossRefGoogle Scholar
  2. Amakiri, S.F. 1979. Melanin and DOPA-positive cells in the skin of tropical cattle. Acta Anatomica, 103, 434–444.CrossRefPubMedGoogle Scholar
  3. Amakiri, S.F., Hill, D.H. 1975. Hair follicle measurements in some tropical and temperate breeds of cattle in Nigeria. International Journal of Biometeorology, 19, 115–121.CrossRefPubMedGoogle Scholar
  4. Bertipaglia, E.C.A., da Silva, R.G., Cardoso, V., Fries, L.A. 2007. Hair coat characteristics and sweating rate of Braford cows in Brazil. Livestock Science, 112, 98–108.CrossRefGoogle Scholar
  5. Bianchini, E., C. McManus; C.M. Lucci; M.C.B. Fernandes; E. Prescott; A.S. Mariante and A.A. Egito. 2006 Características corporais associadas com a adaptação ao calor em bovinos naturalizados brasileiros. Pesquisa agropecuaria brasileira, 41, 1443–1448.Google Scholar
  6. Brown Brandl, T.M. 2009. Overview of the Progress in Reducing Environmental Effects on Cattle. In: Proceedings American Dairy Science Association 18th Discover Conference, 2-5 Nov 2009, Nashville, INGoogle Scholar
  7. Cunha, E.A. Bueno, M.S. Santos, L.E. 2004 Santa Inês: a produção intensiva de carne. Revista O Berro, 63, 6–10Google Scholar
  8. Finch, V.A.; Bennet, I.L.; Holmes, C.R. 1984 Coat colour in cattle: effect on thermal balance, behaviour and growth, and relationship with coat type. Journal of Agricultural Science, 102, 141–147.CrossRefGoogle Scholar
  9. Gebremedhin, K.G., Ni, H., Hillman P.E. 1997 Temperature profile and heat flux through irradiated fur layer. In: Proceedings of the International Livestock Environment Symposium, Bloomington, MN. v.1, p.226–233.Google Scholar
  10. Gebremedhin, K.G., Hillman, P.E., Lee, C.N., Collier, R.J., Willard, S.T., Arthington, J.E., Brown Brandl, T.M. 2008. Sweating rates of dairy cows and beef heifers in hot conditions. Transactions ASABE. 51, 2167–2178.Google Scholar
  11. Holmes, C.W. 1981. A note on the protection provided by the hair coat or fleece of the animal against the thermal effects of simulated rain. Animal Production, 32,225–226.CrossRefGoogle Scholar
  12. Ianella, P.; McManus, C. P.; Caetano, A. R.; Martins, C. F.; Souza, C. J. H. de; Facó, O.; Azevedo, H. C.; Carneiro, P. S.; Paiva, S. R. 2009. Avaliação dos polimorfismos do gene PRNP ligados à Scrapie clássica em núcleos de conservação de ovinos no Brasil. In: Proceedings of the 7th Simposio de Recursos Genéticos para América Latina y El Caribe, p. 265–266.Google Scholar
  13. Jacinto, M.A.C., Silva Sobrinho, A.G., Costa, R.G. 2004. Anatomical-structural characteristics of wool-on and non-wool sheep skins related to the physical-mechanic leather aspects. Revista Brasileira de Zootecnia, 33,1001–1008.CrossRefGoogle Scholar
  14. Li, L., Godwin, I., Liu, S.M., Oddy, V.H., Nolan, J.V. 2006 Skin characteristics and skin protein composition of Merinos differing in estimated breeding values for wool growth and fed at above and below maintenance Australian Journal of Experimental Agriculture, 46,937–941.CrossRefGoogle Scholar
  15. Lucena, C., and T. A. Olson. 2000. Effect of hair coat type on rectal temperatures, milk production and calving interval in Holstein X Carora crossbred cows. In: Proc. 10th Congreso Venezolano de Zootecnia, Guanare, Venezuela. p. 84.Google Scholar
  16. Maia, A.S.C.; Silva, R.G.; Bertipaglia, E.C.A. 2003 Características do pelame de vacas Holandesas em ambiente tropical: um estudo genético e adaptativo. Revista Brasileira de Zootecnia. 32, 843–853.CrossRefGoogle Scholar
  17. Marai, I., Haeeb, A. 2009 Buffalo's biological functions as affected by heat stress — A review. Livestock Science, 127, 89–109.CrossRefGoogle Scholar
  18. Marai, I.F.M., El-Darawany, A.A., Fadiel, A., Abdel-Hafez, M.A.M. 2007 Physiological traits as affected by heat stress in sheep—A review Small Ruminant Research, 71: 1–12CrossRefGoogle Scholar
  19. McManus, C.M., Paludo, G.R., Louvandini, H., Gugel, R., Sasaki, L.C.B., Paiva, S.R. 2009a Heat tolerance in Brazilian sheep: physiological and blood parameters. Tropical Animal Health and Production. 41,95–101,CrossRefPubMedGoogle Scholar
  20. McManus, C.M., Prescott, E., Paludo, G.R., Bianchini, E., Louvandini, H., Mariante, A.S. 2009b. Heat tolerance in naturalized Brazilian cattle breeds. Livestock Science. 120, 256–264CrossRefGoogle Scholar
  21. Müller, P.B., 1982 Bioclimatologia aplicada aos animais domésticos. 2ª Edição rev. e atual. Porto Alegre. Ed. Sulina. 1982. 158 p.Google Scholar
  22. Olson, T. A., C. Lucena, C. C. Chase, Jr., and A. C. Hammond. 2003. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. Journal of Animal Science, 81,80–90,PubMedGoogle Scholar
  23. Olson, T.A. Hammond, A. C. and Chase C. C. 1997a. GM 20. Evidence for the existence of a major gene influencing hair length and heat tolerance in Bos taurus Cattle. Archivos Latinoamericanos de Produccion Animal, 5(Supl. 1), 521–523Google Scholar
  24. Olson, T.A., A.C. Hammond, and C.C. Chase, Jr. 1997b. Evidence for the existence of a major gene influencing hair length and heat tolerance in Senepol cattle. Journal of Animal Science, 75(Suppl. 1): 147Google Scholar
  25. Paiva, S.R., Silvério, V.C., Egito, A.A., McManus, C., Faria, D.A., Mariante, A.S., Castro, S.R., Albuquerque, M.S.M., Dergam, J.A. 2005 Genetic variability of the Brazilian hair sheep breeds. Pesquisa agropecuaria brasileira. 40, 887–893.Google Scholar
  26. Robertshaw, D. 1986. Physical and physiological principles of adaptation of animals to the tropics. In: Proceedings of the Simpósio Internacional de bioclimatologia animal nos trópicos: pequenos e grandes ruminantes, EMBRAPA-DIE, p.87–94.Google Scholar
  27. Silanikove, N. 2000 Effects of heat stress on the welfare of extensively managed domestic ruminants, Livestock Production Science, 67, 1–18CrossRefGoogle Scholar
  28. Silva, R.G. 1998 Estimação do balanço térmico por radiação em vacas holandesas ao sol e à sombra. Proceedings of II Congresso Brasileiro de Biometeorologia. Goiânia, p.118–128.Google Scholar
  29. Silva, R.G. 2000. Introdução á Bioclimatologia Animal. São Paulo. Nobel. 286p.Google Scholar
  30. Silva, R.G.; La Scala Junior, N.; Tonhati, H. 2003. Radiative properties of the skin and hair coat of cattle and other animals. Transactions of the ASAE, 46: 913–918.Google Scholar
  31. Sotomaior, C.S., Sotomaior, V.S. , Madeira, H. M. F. and Thomaz-Soccol, V. 2008. Prion protein gene polymorphisms in sheep in the state of Paraná, Brazil. Animal Genetics, 39, 659–661.CrossRefPubMedGoogle Scholar
  32. Stone, W.C., Chase, L.E. and Fox, D.G.. 1992 Field application of the Cornell Net carbohydrate and protein system in a progressive dairy herd. Proceedings Cornell Nutrition Conf., Ithaca, p.168–172.Google Scholar
  33. Swenson, M. J., Reece, W. O. 1996. Dukes, physiology of domestic animals. 11th ed. Guanabara Koogan, Rio de Janeiro, Brazil.Google Scholar
  34. Turner, H.G. 1984 Variation in rectal temperature of cattle in a tropical environment and its relation to growth rate. Animal Production, 38, 417–427.CrossRefGoogle Scholar
  35. Turnpenny, J.R., Wathes, C.M., Clark, J.A., McArthur, A.J. 2000 Thermal balance of livestock 2. Applications of a parsimonious model. Agricultural and Forest Meteorology, 101, 29–52.CrossRefGoogle Scholar
  36. West, J.W., 2003. Effects of heat stress on production in dairy cattle, Journal Dairy Science, 86, 2131–2144CrossRefGoogle Scholar
  37. Yeates, N.T.M. 1954 Environmental control of coat changes in cattle. Nature, 174:609–610.CrossRefPubMedGoogle Scholar
  38. Yeates, N.T.M. 1955 Photoperiodicity in cattle I. Seasonal changes in coat character and their importance in heat regulation. Australian Journal of Agricultural Research, 6, 991–903.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Concepta McManus
    • 1
  • Helder Louvandini
    • 2
  • Rosilene Gugel
    • 2
  • Luiz Cláudio Bastos Sasaki
    • 2
  • Eliandra Bianchini
    • 2
  • Francisco Ernesto Moreno Bernal
    • 2
  • Samuel Rezende Paiva
    • 3
  • Tiago Prado Paim
    • 2
  1. 1.Department of Animal ProductionAv. Bento GonçalvesPorto AlegreBrazil
  2. 2.Faculdade de Agronomia e Medicina VeterináriaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Final W5 NorteBrasíliaBrazil

Personalised recommendations